Cargando…
Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells
Alpinia katsumadai Hayata (AKH), a widely used traditional Chinese medicine, exerts various biological functions, including anti-inflammatory, antioxidant, anti-microbial and anti-asthmatic effects. However, studies on its anticancer activity and associated mechanisms are limited. The present study...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245070/ https://www.ncbi.nlm.nih.gov/pubmed/35730618 http://dx.doi.org/10.3892/or.2022.8353 |
_version_ | 1784738669266993152 |
---|---|
author | An, Weixiao Zhang, Yuxi Lai, Honglin Zhang, Yangyang Zhang, Hongmei Zhao, Ge Liu, Minghua Li, Yang Lin, Xiukun Cao, Shousong |
author_facet | An, Weixiao Zhang, Yuxi Lai, Honglin Zhang, Yangyang Zhang, Hongmei Zhao, Ge Liu, Minghua Li, Yang Lin, Xiukun Cao, Shousong |
author_sort | An, Weixiao |
collection | PubMed |
description | Alpinia katsumadai Hayata (AKH), a widely used traditional Chinese medicine, exerts various biological functions, including anti-inflammatory, antioxidant, anti-microbial and anti-asthmatic effects. However, studies on its anticancer activity and associated mechanisms are limited. The present study investigated the effects of ethanol extract from AKH on the viability of various human cancer and normal liver LX-2 cells using Cell Counting Kit-8 assay. Apoptosis was detected by Hoechst 33342/PI staining and Annexin-V-FITC/PI double staining. Autophagy was examined by Ad-GFP-LC3B transfection. The association between AKH-induced autophagy and apoptosis was investigated by pre-treatment of the cells with the autophagy inhibitors, 3-methyladenine (3MA) and bafilomycin A1 (Baf-A1), followed by treatment with AKH. The expression levels of cleaved poly(ADP-ribose) polymerase (PARP), caspase-8, caspase-3, caspase-9, phosphorylated (p-)AMP-activated protein kinase (AMPK), Akt, mTOR and p70S6K were examined using western blot analysis. The in vivo antitumor activity of AKH was investigated in nude mice bearing A549 lung cancer xenografts. The components of AKH were detected by liquid chromatography mass spectrometry-ion trap-time-of-flight mass spectrometry. The results revealed that AKH significantly inhibited the proliferation of various cancer cells with the half maximal inhibitory concentration (IC(50)) values of 203–284 µg/ml; however, its inhibitory effect was much less prominent against normal liver LX-2 cells with an IC(50) value of 395 µg/ml. AKH markedly induced apoptosis and autophagy, and upregulated the protein expression of cleaved-caspase-3, caspase-8, caspase-9 and cleaved PARP in a concentration-dependent manner. Of note, the autophagy inhibitors (3MA and Baf-A1) significantly attenuated its pro-apoptotic effects on human pancreatic cancer Panc-28 and lung cancer A549 cells. Furthermore, AKH significantly increased the levels of p-AMPK, and decreased those of p-Akt, p-mTOR and p-p70S6K in Panc-28 and A549 cells. AKH markedly inhibited the growth of A549 tumor xenografts in vivo. In addition, a total of nine compounds were detected from AKH. The present study demonstrates that AKH markedly inhibits the growth and induces autophagy-related apoptosis in cancer cells by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways. AKH and/or its active fractions may thus have potential to be developed as novel anticancer agents for clinical use. |
format | Online Article Text |
id | pubmed-9245070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-92450702022-07-07 Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells An, Weixiao Zhang, Yuxi Lai, Honglin Zhang, Yangyang Zhang, Hongmei Zhao, Ge Liu, Minghua Li, Yang Lin, Xiukun Cao, Shousong Oncol Rep Articles Alpinia katsumadai Hayata (AKH), a widely used traditional Chinese medicine, exerts various biological functions, including anti-inflammatory, antioxidant, anti-microbial and anti-asthmatic effects. However, studies on its anticancer activity and associated mechanisms are limited. The present study investigated the effects of ethanol extract from AKH on the viability of various human cancer and normal liver LX-2 cells using Cell Counting Kit-8 assay. Apoptosis was detected by Hoechst 33342/PI staining and Annexin-V-FITC/PI double staining. Autophagy was examined by Ad-GFP-LC3B transfection. The association between AKH-induced autophagy and apoptosis was investigated by pre-treatment of the cells with the autophagy inhibitors, 3-methyladenine (3MA) and bafilomycin A1 (Baf-A1), followed by treatment with AKH. The expression levels of cleaved poly(ADP-ribose) polymerase (PARP), caspase-8, caspase-3, caspase-9, phosphorylated (p-)AMP-activated protein kinase (AMPK), Akt, mTOR and p70S6K were examined using western blot analysis. The in vivo antitumor activity of AKH was investigated in nude mice bearing A549 lung cancer xenografts. The components of AKH were detected by liquid chromatography mass spectrometry-ion trap-time-of-flight mass spectrometry. The results revealed that AKH significantly inhibited the proliferation of various cancer cells with the half maximal inhibitory concentration (IC(50)) values of 203–284 µg/ml; however, its inhibitory effect was much less prominent against normal liver LX-2 cells with an IC(50) value of 395 µg/ml. AKH markedly induced apoptosis and autophagy, and upregulated the protein expression of cleaved-caspase-3, caspase-8, caspase-9 and cleaved PARP in a concentration-dependent manner. Of note, the autophagy inhibitors (3MA and Baf-A1) significantly attenuated its pro-apoptotic effects on human pancreatic cancer Panc-28 and lung cancer A549 cells. Furthermore, AKH significantly increased the levels of p-AMPK, and decreased those of p-Akt, p-mTOR and p-p70S6K in Panc-28 and A549 cells. AKH markedly inhibited the growth of A549 tumor xenografts in vivo. In addition, a total of nine compounds were detected from AKH. The present study demonstrates that AKH markedly inhibits the growth and induces autophagy-related apoptosis in cancer cells by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways. AKH and/or its active fractions may thus have potential to be developed as novel anticancer agents for clinical use. D.A. Spandidos 2022-06-20 /pmc/articles/PMC9245070/ /pubmed/35730618 http://dx.doi.org/10.3892/or.2022.8353 Text en Copyright: © An et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles An, Weixiao Zhang, Yuxi Lai, Honglin Zhang, Yangyang Zhang, Hongmei Zhao, Ge Liu, Minghua Li, Yang Lin, Xiukun Cao, Shousong Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title | Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title_full | Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title_fullStr | Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title_full_unstemmed | Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title_short | Alpinia katsumadai Hayata induces growth inhibition and autophagy-related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells |
title_sort | alpinia katsumadai hayata induces growth inhibition and autophagy-related apoptosis by regulating the ampk and akt/mtor/p70s6k signaling pathways in cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245070/ https://www.ncbi.nlm.nih.gov/pubmed/35730618 http://dx.doi.org/10.3892/or.2022.8353 |
work_keys_str_mv | AT anweixiao alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT zhangyuxi alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT laihonglin alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT zhangyangyang alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT zhanghongmei alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT zhaoge alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT liuminghua alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT liyang alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT linxiukun alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells AT caoshousong alpiniakatsumadaihayatainducesgrowthinhibitionandautophagyrelatedapoptosisbyregulatingtheampkandaktmtorp70s6ksignalingpathwaysincancercells |