Cargando…
Spatio-temporal disease risk estimation using clustering-based adjacency modelling
Conditional autoregressive models are typically used to capture the spatial autocorrelation present in areal unit disease count data when estimating the spatial pattern in disease risk. This correlation is represented by a binary neighbourhood matrix based on a border sharing specification, which en...
Autores principales: | Yin, Xueqing, Napier, Gary, Anderson, Craig, Lee, Duncan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245163/ https://www.ncbi.nlm.nih.gov/pubmed/35286183 http://dx.doi.org/10.1177/09622802221084131 |
Ejemplares similares
-
Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models
por: Ebrahimian, Hossein, et al.
Publicado: (2017) -
Spatio-Temporal Dynamics of Tuberculosis Clusters in Indonesia
por: Rengganis Wardani, Dyah Wulan Sumekar, et al.
Publicado: (2020) -
On estimation the relative risk of small area and visualization spatio-temporal map
por: Song, Xiaoxiao, et al.
Publicado: (2019) -
Spatial clustering in the spatio-temporal dynamics of endemic cholera
por: Ruiz-Moreno, Diego, et al.
Publicado: (2010) -
A Bayesian space–time model for clustering areal units based on their disease trends
por: Napier, Gary, et al.
Publicado: (2019)