Cargando…
Estimating hearing aid fitting presets with machine learning–based clustering strategies
Although there exist nearly 35 × 10(6) hearing impaired people in the U.S., only an estimated 25% use hearing aids (HA), while others elect not to use prescribed HAs. Lack of HA acceptance can be attributed to several factors including (i) performance variability in diverse environments, (ii) time-t...
Autores principales: | Belitz, Chelzy, Ali, Hussnain, Hansen, John H. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245508/ https://www.ncbi.nlm.nih.gov/pubmed/35784455 http://dx.doi.org/10.1121/10.0007149 |
Ejemplares similares
-
Preset counter
por: Daems, G
Publicado: (1967) -
ORAL PRESETATION
Publicado: (2015) -
Machine Learning-Based Hearing Aid Fitting Personalization Using Clinical Fitting Data
por: Mondol, S. I. M. M. Raton, et al.
Publicado: (2022) -
Platelets' preset lifespan
por: LeBrasseur, Nicole
Publicado: (2007) -
Scaler for multichannel preset circuits
por: Cheretakis, A
Publicado: (1963)