Cargando…
Directly Visualizing Photoinduced Renormalized Momentum-Forbidden Electronic Quantum States in an Atomically Thin Semiconductor
[Image: see text] Resolving the momentum degree of freedom of photoexcited charge carriers and exploring the excited-state physics in the hexagonal Brillouin zone of atomically thin semiconductors have recently attracted great interest for optoelectronic technologies. We demonstrate a combination of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245571/ https://www.ncbi.nlm.nih.gov/pubmed/35584548 http://dx.doi.org/10.1021/acsnano.2c02981 |
Sumario: | [Image: see text] Resolving the momentum degree of freedom of photoexcited charge carriers and exploring the excited-state physics in the hexagonal Brillouin zone of atomically thin semiconductors have recently attracted great interest for optoelectronic technologies. We demonstrate a combination of light-modulated scanning tunneling microscopy and the quasiparticle interference (QPI) technique to offer a directly accessible approach to reveal and quantify the unexplored momentum-forbidden electronic quantum states in transition metal dichalcogenide (TMD) monolayers. Our QPI results affirm the large spin-splitting energy at the spin-valley-coupled Q valleys in the conduction band (CB) of a tungsten disulfide monolayer. Furthermore, we also quantify the photoexcited carrier density-dependent band renormalization at the Q valleys. Our findings directly highlight the importance of the excited-state distribution at the Q valley in the band renormalization in TMDs and support the critical role of the CB Q valley in engineering the quantum electronic valley degree of freedom in TMD devices. |
---|