Cargando…
Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case
BACKGROUND: Surgical meshes have found widespread use in neurosurgical practice. While commonly recognized risks of synthetic mesh include infection, exposure of mesh implants, and foreign body reaction, the risk of mesh tethering to neural structures is often overlooked. OBSERVATIONS: The authors p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association of Neurological Surgeons
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245840/ https://www.ncbi.nlm.nih.gov/pubmed/35855100 http://dx.doi.org/10.3171/CASE21183 |
_version_ | 1784738835748356096 |
---|---|
author | Spellicy, Samantha E. Kilianski, Joseph R. Poston, Rachel Moore-Hill, Debra Vale, Fernando L. |
author_facet | Spellicy, Samantha E. Kilianski, Joseph R. Poston, Rachel Moore-Hill, Debra Vale, Fernando L. |
author_sort | Spellicy, Samantha E. |
collection | PubMed |
description | BACKGROUND: Surgical meshes have found widespread use in neurosurgical practice. While commonly recognized risks of synthetic mesh include infection, exposure of mesh implants, and foreign body reaction, the risk of mesh tethering to neural structures is often overlooked. OBSERVATIONS: The authors presented the first case, to their knowledge, of the disentanglement of mesh interfaced to cortical tissue. The patient, a 68-year-old woman, presented with severe intractable seizure disorder and worsening left hand function and incoordination after meningioma resection and cranioplasty 9 years earlier. Magnetic resonance imaging (MRI) demonstrated interval progression of macrocystic encephalomalacia involving the right supplementary motor area, with fluid-attenuated inversion recovery signal extending posteriorly into the right primary motor cortex. Both computed tomography and MRI suggested potential tethering of the cortex to the overlying cranioplasty mesh. Because of the progressive nature of her condition, the decision was made to surgically remove the tethered mesh. LESSONS: De-tethering brain parenchyma from surgical mesh requires careful microdissection and judicious use of electrocautery to minimize further tissue damage and preserve neurological function. This inadvertent complication evinces the importance of using dural substitutes when unable to primarily repair the dura to prevent scarring and tethering of neural tissues to synthetic cranioplasty materials. |
format | Online Article Text |
id | pubmed-9245840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association of Neurological Surgeons |
record_format | MEDLINE/PubMed |
spelling | pubmed-92458402022-07-18 Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case Spellicy, Samantha E. Kilianski, Joseph R. Poston, Rachel Moore-Hill, Debra Vale, Fernando L. J Neurosurg Case Lessons General Interest BACKGROUND: Surgical meshes have found widespread use in neurosurgical practice. While commonly recognized risks of synthetic mesh include infection, exposure of mesh implants, and foreign body reaction, the risk of mesh tethering to neural structures is often overlooked. OBSERVATIONS: The authors presented the first case, to their knowledge, of the disentanglement of mesh interfaced to cortical tissue. The patient, a 68-year-old woman, presented with severe intractable seizure disorder and worsening left hand function and incoordination after meningioma resection and cranioplasty 9 years earlier. Magnetic resonance imaging (MRI) demonstrated interval progression of macrocystic encephalomalacia involving the right supplementary motor area, with fluid-attenuated inversion recovery signal extending posteriorly into the right primary motor cortex. Both computed tomography and MRI suggested potential tethering of the cortex to the overlying cranioplasty mesh. Because of the progressive nature of her condition, the decision was made to surgically remove the tethered mesh. LESSONS: De-tethering brain parenchyma from surgical mesh requires careful microdissection and judicious use of electrocautery to minimize further tissue damage and preserve neurological function. This inadvertent complication evinces the importance of using dural substitutes when unable to primarily repair the dura to prevent scarring and tethering of neural tissues to synthetic cranioplasty materials. American Association of Neurological Surgeons 2021-06-14 /pmc/articles/PMC9245840/ /pubmed/35855100 http://dx.doi.org/10.3171/CASE21183 Text en © 2021 The authors https://creativecommons.org/licenses/by-nc-nd/4.0/CC BY-NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | General Interest Spellicy, Samantha E. Kilianski, Joseph R. Poston, Rachel Moore-Hill, Debra Vale, Fernando L. Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title | Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title_full | Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title_fullStr | Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title_full_unstemmed | Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title_short | Tethered brain: disentangling unintentional brain-mesh interfaces. Illustrative case |
title_sort | tethered brain: disentangling unintentional brain-mesh interfaces. illustrative case |
topic | General Interest |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245840/ https://www.ncbi.nlm.nih.gov/pubmed/35855100 http://dx.doi.org/10.3171/CASE21183 |
work_keys_str_mv | AT spellicysamanthae tetheredbraindisentanglingunintentionalbrainmeshinterfacesillustrativecase AT kilianskijosephr tetheredbraindisentanglingunintentionalbrainmeshinterfacesillustrativecase AT postonrachel tetheredbraindisentanglingunintentionalbrainmeshinterfacesillustrativecase AT moorehilldebra tetheredbraindisentanglingunintentionalbrainmeshinterfacesillustrativecase AT valefernandol tetheredbraindisentanglingunintentionalbrainmeshinterfacesillustrativecase |