Cargando…
Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection
A new method was developed for pre-concentration and determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction (DLLME) and capillary electrophoresis (CE) with photodiode array detection. The method was based on the formation of tiny droplets of an organic...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245984/ https://www.ncbi.nlm.nih.gov/pubmed/35784428 http://dx.doi.org/10.1080/20961790.2021.1986771 |
_version_ | 1784738869046935552 |
---|---|
author | Meng, Liang Ye, Shuhai Wu, Yilin You, Linda |
author_facet | Meng, Liang Ye, Shuhai Wu, Yilin You, Linda |
author_sort | Meng, Liang |
collection | PubMed |
description | A new method was developed for pre-concentration and determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction (DLLME) and capillary electrophoresis (CE) with photodiode array detection. The method was based on the formation of tiny droplets of an organic extractant in the prepared sample solution using water-immiscible organic solvent (chloroform) dissolved in water-miscible organic dispersive solvent (isopropyl alcohol). The organic phase, which extracted eight drugs of abuse from the prepared urine solution, was separated by centrifugation. The sedimented phase was transferred into a small volume CE auto-sampler vial with 10 µL of 1% HCl methanol solution and evaporated to dryness. The residue was reconstituted in lidocaine hydrochloride (internal standard) aqueous solution and introduced by electrokinetic injection into CE. Under the optimum conditions, acceptable linear relationship was observed in the range of 3.0–500 ng/mL with the correlation coefficient (r) of 0.9982–0.9994 for spiked urine samples. The limit of detection (LOD) (S/N = 3) was estimated to be 1.0 ng/mL. A recovery of 75.7%–90.6% was obtained for spiked samples. The mean relative error (MRE) was within ±7.0% and the relative standard deviation (RSD) was less than 6.9%. The proposed DLLME-CE procedure offers an alternative analytical approach for the sensitive detection of drugs of abuse in real urine samples. KEY POINTS: The dispersive liquid-liquid microextraction (DLLME) was involved for the determination of drugs in urine with capillary electrophoresis with photodiode array detection (CE-PDA). Good linearity, sensitivity, recovery and precision were achieved. The proposed method was eco-friendly with microliter scale solvent consumption. |
format | Online Article Text |
id | pubmed-9245984 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-92459842022-07-01 Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection Meng, Liang Ye, Shuhai Wu, Yilin You, Linda Forensic Sci Res Original Articles A new method was developed for pre-concentration and determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction (DLLME) and capillary electrophoresis (CE) with photodiode array detection. The method was based on the formation of tiny droplets of an organic extractant in the prepared sample solution using water-immiscible organic solvent (chloroform) dissolved in water-miscible organic dispersive solvent (isopropyl alcohol). The organic phase, which extracted eight drugs of abuse from the prepared urine solution, was separated by centrifugation. The sedimented phase was transferred into a small volume CE auto-sampler vial with 10 µL of 1% HCl methanol solution and evaporated to dryness. The residue was reconstituted in lidocaine hydrochloride (internal standard) aqueous solution and introduced by electrokinetic injection into CE. Under the optimum conditions, acceptable linear relationship was observed in the range of 3.0–500 ng/mL with the correlation coefficient (r) of 0.9982–0.9994 for spiked urine samples. The limit of detection (LOD) (S/N = 3) was estimated to be 1.0 ng/mL. A recovery of 75.7%–90.6% was obtained for spiked samples. The mean relative error (MRE) was within ±7.0% and the relative standard deviation (RSD) was less than 6.9%. The proposed DLLME-CE procedure offers an alternative analytical approach for the sensitive detection of drugs of abuse in real urine samples. KEY POINTS: The dispersive liquid-liquid microextraction (DLLME) was involved for the determination of drugs in urine with capillary electrophoresis with photodiode array detection (CE-PDA). Good linearity, sensitivity, recovery and precision were achieved. The proposed method was eco-friendly with microliter scale solvent consumption. Taylor & Francis 2021-12-09 /pmc/articles/PMC9245984/ /pubmed/35784428 http://dx.doi.org/10.1080/20961790.2021.1986771 Text en © 2021 The Author(s). Published by Taylor & Francis Group on behalf of the Academy of Forensic Science. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Meng, Liang Ye, Shuhai Wu, Yilin You, Linda Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title | Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title_full | Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title_fullStr | Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title_full_unstemmed | Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title_short | Determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with PDA detection |
title_sort | determination of multiple drugs of abuse in human urine using dispersive liquid–liquid microextraction and capillary electrophoresis with pda detection |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245984/ https://www.ncbi.nlm.nih.gov/pubmed/35784428 http://dx.doi.org/10.1080/20961790.2021.1986771 |
work_keys_str_mv | AT mengliang determinationofmultipledrugsofabuseinhumanurineusingdispersiveliquidliquidmicroextractionandcapillaryelectrophoresiswithpdadetection AT yeshuhai determinationofmultipledrugsofabuseinhumanurineusingdispersiveliquidliquidmicroextractionandcapillaryelectrophoresiswithpdadetection AT wuyilin determinationofmultipledrugsofabuseinhumanurineusingdispersiveliquidliquidmicroextractionandcapillaryelectrophoresiswithpdadetection AT youlinda determinationofmultipledrugsofabuseinhumanurineusingdispersiveliquidliquidmicroextractionandcapillaryelectrophoresiswithpdadetection |