Cargando…
Systematic perturbation of an artificial neural network: A step towards quantifying causal contributions in the brain
Lesion inference analysis is a fundamental approach for characterizing the causal contributions of neural elements to brain function. This approach has gained new prominence through the arrival of modern perturbation techniques with unprecedented levels of spatiotemporal precision. While inferences...
Autores principales: | Fakhar, Kayson, Hilgetag, Claus C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246164/ https://www.ncbi.nlm.nih.gov/pubmed/35714139 http://dx.doi.org/10.1371/journal.pcbi.1010250 |
Ejemplares similares
-
When Neural Activity Fails to Reveal Causal Contributions
por: Fakhar, Kayson, et al.
Publicado: (2023) -
Toward a theory of coactivation patterns in excitable neural networks
por: Messé, Arnaud, et al.
Publicado: (2018) -
Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke
por: Zavaglia, Melissa, et al.
Publicado: (2015) -
Quantifying the Brain Predictivity of Artificial Neural Networks With Nonlinear Response Mapping
por: Anand, Aditi, et al.
Publicado: (2021) -
‘One region to control them all'- the surprising effectiveness of network control theory in predicting post-stroke recovery from aphasia
por: Popova, Mariia, et al.
Publicado: (2022)