Cargando…
Pharmacokinetics of Veratramine and Jervine from Alcohol Extracts of Radix Veratri
BACKGROUND: Chinese Materia Medica and Jiangsu New Medical College record that Radix Veratri root is Liliaceae Veratrum taliense Loses. f. and the root of Veratrum stenophyllum Diels. According to traditional Chinese medicine (TCM) example, Radix Veratri is a Liliaceae plant Veratrum taliense. Anoth...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246587/ https://www.ncbi.nlm.nih.gov/pubmed/35785141 http://dx.doi.org/10.1155/2022/8289548 |
Sumario: | BACKGROUND: Chinese Materia Medica and Jiangsu New Medical College record that Radix Veratri root is Liliaceae Veratrum taliense Loses. f. and the root of Veratrum stenophyllum Diels. According to traditional Chinese medicine (TCM) example, Radix Veratri is a Liliaceae plant Veratrum taliense. Another literature pointed out that the aliases of Veratrum taliense and Veratrum angustifolia are both Radix Veratri, and their effects are basically the same. The main active ingredient of Veratrum is veratramine, of which veratramine and Jervine are higher in content, reaching 24.60% and 21.28% of the total alkaloids, respectively. Veratrum alkaloids are both toxic and effective ingredients. In addition to its good clinical efficacy, attention should also be paid to its pharmacokinetic characteristics in vivo. It is particularly important to study the pharmacokinetic characteristics of veratramine and Jervine in vivo. OBJECTIVE: The goal of this study was to develop a simple and effective method for measuring veratramine and Jervine in rat plasma at the same time. This method was used to study the pharmacokinetic characteristics of veratramine and Jervine in the alcohol extract of Radix Veratri in rats, to provide a reasonable basis for the clinical use of Radix Veratri. METHODS: Eighteen SD rats were randomly assigned into three groups, half male and half female, and were given 0.04 g/kg, 0.08g/kg, and 0.16 g/kg Radix Veratri alcohol extract, respectively. Blood samples were collected at different time points and were analyzed by LC-MS/MS after protein precipitation. Bullatine was set as the internal standard; the plasma samples were extracted with ethyl acetate. After the sample was processed, acetonitrile-10 mM ammonium acetate, whose pH was adjusted to 8.8 with ammonia water, was taken as the mobile phase. Veratramine quantitative ion pair was 410.1⟶295.1m/z, Jervine quantitative ion pair was 426.2⟶114.1m/z, and Bullatine B (IS) quantitative ion pair was 438.2⟶420.1m/z. In the positive ion mode, the multireaction monitoring (MRM) mode was used to determine the blood concentration of veratramine and Jervine. DAS 3.3.0 was used to calculate the relevant pharmacokinetic parameters. RESULTS: Veratramine had a good linear relationship in the concentration range of 0.0745~18.2 ng/mL, and that of Jervine was 1.11~108 ng/mL. The correlation coefficient r of three consecutive batches of the standard curve was greater than 0.995. Veratramine's lower quantification limit was 0.745 ng/mL, Jervine's was 1.11 ng/mL, and precision and accuracy were both less than 15%. The accuracy of veratramine was between 88.96% and 101.85%, and the accuracy of Jervine was between 92.96% and 104.50%. This method was adopted for the pharmacokinetic study of alcohol extracts of Radix Veratri. The results showed that only C(max) of veratramine female rats did not show linear kinetic characteristics in the dose range of Radix Veratri alcohol extract from 0.04 g/kg to 0.16 g/kg. For AUC(0‐t) and C(max) of veratramine and Jervine, it could not determine whether the Radix Veratri alcohol extract showed linear kinetic characteristics within the dosage range of 0.04 g/kg~0.16 g/kg. Veratramine and Jervine showed obvious gender differences in the absorption and elimination stages. The absorption rate of veratramine and Jervine by male mice was about 10 times higher than that of female mice, and the elimination rate of male mice is about 20 times lower than that of female mice. It was suggested that the clinical application of the steroidal alkaloids veratramine and Jervine in Radix Veratri required rational use of drugs based on gender. CONCLUSION: An LC-MS/MS analysis method suitable for the pharmacokinetic study of veratramine and Jervine in Radix Veratri in SD rats was established to provide a basis for in vivo pharmacokinetic studies. The pharmacokinetic characteristics of veratramine and Jervine in the alcohol extract of Radix Veratri were significantly different in female and male rats. During the clinical use of Radix Veratri, it should pay close attention to the obvious gender differences that may occur after the medication. |
---|