Cargando…
Dynamic deformable attention network (DDANet) for COVID-19 lesions semantic segmentation
Deep learning based medical image segmentation is an important step within diagnosis, which relies strongly on capturing sufficient spatial context without requiring too complex models that are hard to train with limited labelled data. Training data is in particular scarce for segmenting infection r...
Autores principales: | Rajamani, Kumar T., Siebert, Hanna, Heinrich, Mattias P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246608/ https://www.ncbi.nlm.nih.gov/pubmed/34022421 http://dx.doi.org/10.1016/j.jbi.2021.103816 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Semantically Guided Large Deformation Estimation with Deep Networks
por: Ha, In Young, et al.
Publicado: (2020) -
Multiple-Attention Mechanism Network for Semantic Segmentation
por: Wang, Dongli, et al.
Publicado: (2022) -
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network
por: Zhang, Jianxiong, et al.
Publicado: (2022) -
CMANet: Cross-Modality Attention Network for Indoor-Scene Semantic Segmentation
por: Zhu, Longze, et al.
Publicado: (2022)