Cargando…

An Efficient Rotation Forest-Based Ensemble Approach for Predicting Severity of Parkinson's Disease

Parkinson's disease (PD) is a neurodegenerative nervous system disorder that mainly affects body movement, and it is one of the most common diseases, particularly in elderly individuals. This paper proposes a new machine learning approach to predict Parkinson's disease severity using UCI&#...

Descripción completa

Detalles Bibliográficos
Autores principales: Sheikhi, Saeid, Kheirabadi, Mohammad Taghi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246609/
https://www.ncbi.nlm.nih.gov/pubmed/35783585
http://dx.doi.org/10.1155/2022/5524852
Descripción
Sumario:Parkinson's disease (PD) is a neurodegenerative nervous system disorder that mainly affects body movement, and it is one of the most common diseases, particularly in elderly individuals. This paper proposes a new machine learning approach to predict Parkinson's disease severity using UCI's Parkinson's telemonitoring voice dataset. The proposed method analyses the patient's voice data and classifies them into “severe” and “nonsevere” classes. At first, a subset of features was selected, then a novel approach with a combination of Rotation Forest and Random Forest was applied on selected features to determine each patient's disease severity. Analysis of the experimental results shows that the proposed approach can detect the severity of PD patients in the early stages. Moreover, the proposed model is compared with several algorithms, and the results indicate that the model is highly successful in classifying records and outperformed the other methods concerning classification accuracy and F1-measure rate.