Cargando…
Breast Cancer Classification Using FCN and Beta Wavelet Autoencoder
In this paper, a new classification approach of breast cancer based on Fully Convolutional Networks (FCNs) and Beta Wavelet Autoencoder (BWAE) is presented. FCN, as a powerful image segmentation model, is used to extract the relevant information from mammography images. It will identify the relevant...
Autores principales: | AlEisa, Hussah Nasser, Touiti, Wajdi, Ali ALHussan, Amel, Ben Aoun, Najib, Ejbali, Ridha, Zaied, Mourad, Saadia, Ayesha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246636/ https://www.ncbi.nlm.nih.gov/pubmed/35785059 http://dx.doi.org/10.1155/2022/8044887 |
Ejemplares similares
-
Accurate Prediction of Anxiety Levels in Asian Countries Using a Fuzzy Expert System
por: Ramzan, Mouz, et al.
Publicado: (2023) -
Data Confidentiality in Healthcare Monitoring Systems Based on Image Steganography to Improve the Exchange of Patient Information Using the Internet of Things
por: AlEisa, Hussah N.
Publicado: (2022) -
Time Series Classification with InceptionFCN
por: Usmankhujaev, Saidrasul, et al.
Publicado: (2021) -
Effect of Polymorphisms in the FCN1, FCN2, and FCN3 Genes on the Susceptibility to Develop Rheumatoid Arthritis: A Systematic Review
por: Gil-Quiñones, Sebastián R., et al.
Publicado: (2022) -
K-Mer Spectrum-Based Error Correction Algorithm for Next-Generation Sequencing Data
por: AlEisa, Hussah N., et al.
Publicado: (2022)