Cargando…
Fundamental and practical aspects of machine learning for the peak picking of biomolecular NMR spectra
Rapid progress in machine learning offers new opportunities for the automated analysis of multidimensional NMR spectra ranging from protein NMR to metabolomics applications. Most recently, it has been demonstrated how deep neural networks (DNN) designed for spectral peak picking are capable of decon...
Autores principales: | Li, Da-Wei, Hansen, Alexandar L., Bruschweiler-Li, Lei, Yuan, Chunhua, Brüschweiler, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246764/ https://www.ncbi.nlm.nih.gov/pubmed/35389128 http://dx.doi.org/10.1007/s10858-022-00393-1 |
Ejemplares similares
-
DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra
por: Li, Da-Wei, et al.
Publicado: (2021) -
COLMARq: A Web Server for 2D NMR Peak Picking and
Quantitative Comparative Analysis of Cohorts of Metabolomics Samples
por: Li, Da-Wei, et al.
Publicado: (2022) -
DEEP Picker1D and Voigt Fitter1D: a versatile tool set for the automated quantitative spectral deconvolution of complex 1D-NMR spectra
por: Li, Da-Wei, et al.
Publicado: (2023) -
Bayesian Peak Picking for NMR Spectra
por: Cheng, Yichen, et al.
Publicado: (2014) -
Functional protein dynamics on uncharted time scales detected by nanoparticle-assisted NMR spin relaxation
por: Xie, Mouzhe, et al.
Publicado: (2019)