Cargando…

A Nurr1 ligand C-DIM12 attenuates brain inflammation and improves functional recovery after intracerebral hemorrhage in mice

We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another N...

Descripción completa

Detalles Bibliográficos
Autores principales: Kinoshita, Keita, Yoshimizu, Ayaka, Ichihara, Yusei, Ushida, Keisuke, Kotani, Shunsuke, Kurauchi, Yuki, Seki, Takahiro, Katsuki, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246855/
https://www.ncbi.nlm.nih.gov/pubmed/35773404
http://dx.doi.org/10.1038/s41598-022-15178-7
Descripción
Sumario:We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another Nurr1 ligand that recognizes a domain of Nurr1 different from the ligand-binding domain. In the present study, mice were treated daily with C-DIM12 (50 or 100 mg/kg, p.o.) or amodiaquine (40 mg/kg, i.p.), or twice daily with 1400 W (20 mg/kg, i.p.), an inducible nitric oxide synthase (iNOS) inhibitor, from 3 h after ICH induction by microinjection of collagenase into the striatum. C-DIM12 improved the recovery of neurological function and prevented neuron loss in the hematoma, while suppressed activation of microglia/macrophages and expression of inflammatory mediators interleukin-6 and CC chemokine ligand 2. In addition, C-DIM12 as well as amodiaquine preserved axonal structures in the internal capsule and axonal transport function. We also found that C-DIM12 and amodiaquine suppressed the increases of iNOS mRNA expression after ICH. Moreover, 1400 W improved neurological function and prevented neuron loss, activation of microglia/macrophages and axonal transport dysfunction. These results suggest that suppression of iNOS induction contributes to several features of the therapeutic effects of Nurr1 ligands.