Cargando…
Superhydrophobic magnetic sorbent via surface modification of banded iron formation for oily water treatment
In the current study, a simple dry coating method was utilized to fabricate a super-hydrophobic super-magnetic powder (ZS@BIF) for oily water purification using zinc stearate (ZS) and banded iron formation (BIF). The produced composite was fully characterized as a magnetic sorbent for oily water tre...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246911/ https://www.ncbi.nlm.nih.gov/pubmed/35773322 http://dx.doi.org/10.1038/s41598-022-15187-6 |
Sumario: | In the current study, a simple dry coating method was utilized to fabricate a super-hydrophobic super-magnetic powder (ZS@BIF) for oily water purification using zinc stearate (ZS) and banded iron formation (BIF). The produced composite was fully characterized as a magnetic sorbent for oily water treatment. The results of X-ray diffraction diffractometer (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and particle size analysis revealed the fabrication of homogenous hydrophobic-magnetic composite particles with core–shell structure. Contact angle and magnetic susceptibility results showed that 4 (BIF): 1 (Zs) was the ideal coverage ratio to render the core material superhydrophobic and preserve its ferromagnetic nature. The capability of the fabricated composite to sorb. n-butyl acetate, kerosene, and cyclohexane from oil–water system was evaluated. ZS@BIF composite showed a higher affinity to adsorb cyclohexane than n-butyl acetate and kerosene with a maximum adsorption capacity of about 22 g g(−1) and 99.9% removal efficiency. Moreover, about 95% of the adsorbed oils could be successfully recovered (desorbed) by rotary evaporator and the regenerated ZS@BIF composite showed high recyclability over ten repeated cycles. |
---|