Cargando…

Advancing early warning capabilities with CHIRPS-compatible NCEP GEFS precipitation forecasts

CHIRPS-GEFS is an operational data set that provides daily bias-corrected forecasts for next 1-day to ~15-day precipitation totals and anomalies at a quasi-global 50-deg N to 50-deg S extent and 0.05-degree resolution. These are based on National Centers for Environmental Prediction (NCEP) Global En...

Descripción completa

Detalles Bibliográficos
Autores principales: Harrison, Laura, Landsfeld, Martin, Husak, Greg, Davenport, Frank, Shukla, Shraddhanand, Turner, William, Peterson, Pete, Funk, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246965/
https://www.ncbi.nlm.nih.gov/pubmed/35773449
http://dx.doi.org/10.1038/s41597-022-01468-2
Descripción
Sumario:CHIRPS-GEFS is an operational data set that provides daily bias-corrected forecasts for next 1-day to ~15-day precipitation totals and anomalies at a quasi-global 50-deg N to 50-deg S extent and 0.05-degree resolution. These are based on National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System version 12 (GEFS v12) precipitation forecasts. CHIRPS-GEFS forecasts are compatible with Climate Hazards center InfraRed Precipitation with Stations (CHIRPS) data, which is actively used for drought monitoring, early warning, and near real-time impact assessments. A rank-based quantile matching procedure is used to transform GEFS v12 “reforecast” and “real-time” forecast ensemble means to CHIRPS spatial-temporal characteristics. Matching distributions to CHIRPS makes forecasts better reflect local climatology at finer spatial resolution and reduces moderate-to-large forecast errors. As shown in this study, having a CHIRPS-compatible version of the latest generation of NCEP GEFS forecasts enables rapid assessment of current forecasts and local historical context. CHIRPS-GEFS effectively bridges the gap between observations and weather predictions, increasing the value of both by connecting monitoring resources (CHIRPS) with interoperable forecasts.