Cargando…
Variational autoencoders learn transferrable representations of metabolomics data
Dimensionality reduction approaches are commonly used for the deconvolution of high-dimensional metabolomics datasets into underlying core metabolic processes. However, current state-of-the-art methods are widely incapable of detecting nonlinearities in metabolomics data. Variational Autoencoders (V...
Autores principales: | Gomari, Daniel P., Schweickart, Annalise, Cerchietti, Leandro, Paietta, Elisabeth, Fernandez, Hugo, Al-Amin, Hassen, Suhre, Karsten, Krumsiek, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246987/ https://www.ncbi.nlm.nih.gov/pubmed/35773471 http://dx.doi.org/10.1038/s42003-022-03579-3 |
Ejemplares similares
-
maplet: an extensible R toolbox for modular and reproducible metabolomics pipelines
por: Chetnik, Kelsey, et al.
Publicado: (2021) -
Representation learning of resting state fMRI with variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2021) -
Activités Luigi: Comment le transferrer?
Publicado: (1989) -
Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data
por: Krumsiek, Jan, et al.
Publicado: (2011) -
MoDentify: phenotype-driven module identification in metabolomics networks at different resolutions
por: Do, Kieu Trinh, et al.
Publicado: (2019)