Cargando…
Optimised weight programming for analogue memory-based deep neural networks
Analogue memory-based deep neural networks provide energy-efficiency and per-area throughput gains relative to state-of-the-art digital counterparts such as graphics processing units. Recent advances focus largely on hardware-aware algorithmic training and improvements to circuits, architectures, an...
Autores principales: | Mackin, Charles, Rasch, Malte J., Chen, An, Timcheck, Jonathan, Bruce, Robert L., Li, Ning, Narayanan, Pritish, Ambrogio, Stefano, Le Gallo, Manuel, Nandakumar, S. R., Fasoli, Andrea, Luquin, Jose, Friz, Alexander, Sebastian, Abu, Tsai, Hsinyu, Burr, Geoffrey W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247051/ https://www.ncbi.nlm.nih.gov/pubmed/35773285 http://dx.doi.org/10.1038/s41467-022-31405-1 |
Ejemplares similares
-
Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices
por: Spoon, Katie, et al.
Publicado: (2021) -
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators
por: Rasch, Malte J., et al.
Publicado: (2023) -
An analog-AI chip for energy-efficient speech recognition and transcription
por: Ambrogio, S., et al.
Publicado: (2023) -
New trends in fusion research
por: Fasoli, Ambrogio
Publicado: (2004) -
Electron flux and pressure dynamic in the LHC vacuum pilot sector as a function of beam parameters and beam pipe properties
por: Buratin, Elena, et al.
Publicado: (2020)