Cargando…

Effects of seawater sulfur starvation and enrichment on Gracilaria gracilis growth and biochemical composition

The genus Gracilaria, largest biomass producer in coastal regions, encompasses a wide range of species including Gracilaria gracilis. Nowadays, there is a spate of interest in its culture in lagoon where the water sulfate concentration is variable. A laboratory culture was carried out to determine t...

Descripción completa

Detalles Bibliográficos
Autores principales: Mensi, Fethi, Ben Ghedifa, Aziz, Rajhi, Hayfa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247063/
https://www.ncbi.nlm.nih.gov/pubmed/35773380
http://dx.doi.org/10.1038/s41598-022-15303-6
Descripción
Sumario:The genus Gracilaria, largest biomass producer in coastal regions, encompasses a wide range of species including Gracilaria gracilis. Nowadays, there is a spate of interest in its culture in lagoon where the water sulfate concentration is variable. A laboratory culture was carried out to determine the sulfate concentration effect on their growth as well as their biochemical composition, which were 2.5, 27 or 50 mM, referred to as SSS (sulfur starved seawater), SW (seawater) and SES (sulfur enriched seawater).We found that the sulfate content of the surrounding medium is a key parameter influencing both the alga growth and its composition. However, seawater proved to be the most suitable environment to sustain alga growth, proteins, R-phycoerythrin and agar yields, but sulfur enrichment and starvation affects them. The sulfate degree of agar and therefore its quality is related to the medium sulfate concentration. We conclude that sulfur starvation (2.5 mM) for three weeks, led to severe growth retardation, lower agar yield and quality and indicated the limit potential of G. gracilis for mariculture under these conditions. These results demonstrated that the success of G. gracilis culture in the lagoon is feasible if sulfate concentration is closer to that of seawater.