Cargando…

Accurate 3D hand mesh recovery from a single RGB image

This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing approaches where parametric hand models are employed as the prior, we show that the hand mesh can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN to learn the...

Descripción completa

Detalles Bibliográficos
Autores principales: Pemasiri, Akila, Nguyen, Kien, Sridharan, Sridha, Fookes, Clinton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247073/
https://www.ncbi.nlm.nih.gov/pubmed/35773266
http://dx.doi.org/10.1038/s41598-022-14380-x
Descripción
Sumario:This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing approaches where parametric hand models are employed as the prior, we show that the hand mesh can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN to learn the mesh through end-to-end adversarial training. By interpreting the mesh as a graph, our model is able to capture the topological relationship among the mesh vertices. We also introduce a 3D surface descriptor into the GAN architecture to further capture the associated 3D features. We conduct experiments with the proposed Im2Mesh GAN architecture in two settings: one where we can reap the benefits of coupled groundtruth data availability of the images and the corresponding meshes; and the other which combats the more challenging problem of mesh estimation without the corresponding groundtruth. Through extensive evaluations we demonstrate that even without using any hand priors the proposed method performs on par or better than the state-of-the-art.