Cargando…
On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification
On-chip training remains a challenging issue for photonic devices to implement machine learning algorithms. Most demonstrations only implement inference in photonics for offline-trained neural network models. On the other hand, artificial neural networks are one of the most deployed algorithms, whil...
Autores principales: | Cong, Guangwei, Yamamoto, Noritsugu, Inoue, Takashi, Maegami, Yuriko, Ohno, Morifumi, Kita, Shota, Namiki, Shu, Yamada, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247170/ https://www.ncbi.nlm.nih.gov/pubmed/35773261 http://dx.doi.org/10.1038/s41467-022-30906-3 |
Ejemplares similares
-
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
por: Schuck, C., et al.
Publicado: (2016) -
In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon
por: Tokel, Onur, et al.
Publicado: (2017) -
Coupling NANF to Silicon Photonics circuits
por: Scarcella, C, et al.
Publicado: (2022) -
On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits
por: Elshaari, Ali W., et al.
Publicado: (2017) -
On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices
por: García-Meca, Carlos, et al.
Publicado: (2017)