Cargando…

Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance

Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Coldea, Andra, Veniero, Domenica, Morand, Stephanie, Trajkovic, Jelena, Romei, Vincenzo, Harvey, Monika, Thut, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247279/
https://www.ncbi.nlm.nih.gov/pubmed/35784849
http://dx.doi.org/10.3389/fnins.2022.886342
_version_ 1784739125424816128
author Coldea, Andra
Veniero, Domenica
Morand, Stephanie
Trajkovic, Jelena
Romei, Vincenzo
Harvey, Monika
Thut, Gregor
author_facet Coldea, Andra
Veniero, Domenica
Morand, Stephanie
Trajkovic, Jelena
Romei, Vincenzo
Harvey, Monika
Thut, Gregor
author_sort Coldea, Andra
collection PubMed
description Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy—but not awareness ratings—depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling.
format Online
Article
Text
id pubmed-9247279
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-92472792022-07-02 Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance Coldea, Andra Veniero, Domenica Morand, Stephanie Trajkovic, Jelena Romei, Vincenzo Harvey, Monika Thut, Gregor Front Neurosci Neuroscience Alpha-band oscillatory activity over occipito-parietal areas is involved in shaping perceptual and cognitive processes, with a growing body of electroencephalographic (EEG) evidence indicating that pre-stimulus alpha-band amplitude relates to the subjective perceptual experience, but not to objective measures of visual task performance (discrimination accuracy). The primary aim of the present transcranial magnetic stimulation (TMS) study was to investigate whether causality can be established for this relationship, using rhythmic (alpha-band) TMS entrainment protocols. It was anticipated that pre-stimulus 10 Hz-TMS would induce changes in subjective awareness ratings but not accuracy, in the visual hemifield contralateral to TMS. To test this, we administered 10 Hz-TMS over the right intraparietal sulcus prior to visual stimulus presentation in 17 participants, while measuring their objective performance and subjective awareness in a visual discrimination task. Arrhythmic and 10 Hz sham-TMS served as control conditions (within-participant design). Resting EEG was used to record individual alpha frequency (IAF). A study conducted in parallel to ours with a similar design but reported after we completed data collection informed further, secondary analyses for a causal relationship between pre-stimulus alpha-frequency and discrimination accuracy. This was explored through a regression analysis between rhythmic-TMS alpha-pace relative to IAF and performance measures. Our results revealed that contrary to our primary expectation, pre-stimulus 10 Hz-TMS did not affect subjective measures of performance, nor accuracy, relative to control-TMS. This null result is in accord with a recent finding showing that for influencing subjective measures of performance, alpha-TMS needs to be applied post-stimulus. In addition, our secondary analysis showed that IAF was positively correlated with task accuracy across participants, and that 10 Hz-TMS effects on accuracy—but not awareness ratings—depended on IAF: The slower (or faster) the IAF, relative to the fixed 10 Hz TMS frequency, the stronger the TMS-induced performance improvement (or worsening), indicating that 10 Hz-TMS produced a gain (or a loss) in individual performance, directly depending on TMS-pace relative to IAF. In support of recent reports, this is evidence for alpha-frequency playing a causal role in perceptual sensitivity likely through regulating the speed of sensory sampling. Frontiers Media S.A. 2022-06-17 /pmc/articles/PMC9247279/ /pubmed/35784849 http://dx.doi.org/10.3389/fnins.2022.886342 Text en Copyright © 2022 Coldea, Veniero, Morand, Trajkovic, Romei, Harvey and Thut. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Coldea, Andra
Veniero, Domenica
Morand, Stephanie
Trajkovic, Jelena
Romei, Vincenzo
Harvey, Monika
Thut, Gregor
Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title_full Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title_fullStr Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title_full_unstemmed Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title_short Effects of Rhythmic Transcranial Magnetic Stimulation in the Alpha-Band on Visual Perception Depend on Deviation From Alpha-Peak Frequency: Faster Relative Transcranial Magnetic Stimulation Alpha-Pace Improves Performance
title_sort effects of rhythmic transcranial magnetic stimulation in the alpha-band on visual perception depend on deviation from alpha-peak frequency: faster relative transcranial magnetic stimulation alpha-pace improves performance
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247279/
https://www.ncbi.nlm.nih.gov/pubmed/35784849
http://dx.doi.org/10.3389/fnins.2022.886342
work_keys_str_mv AT coldeaandra effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT venierodomenica effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT morandstephanie effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT trajkovicjelena effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT romeivincenzo effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT harveymonika effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance
AT thutgregor effectsofrhythmictranscranialmagneticstimulationinthealphabandonvisualperceptiondependondeviationfromalphapeakfrequencyfasterrelativetranscranialmagneticstimulationalphapaceimprovesperformance