Cargando…
Maximum Likelihood Reconstruction of Water Cherenkov Events With Deep Generative Neural Networks
Large water Cherenkov detectors have shaped our current knowledge of neutrino physics and nucleon decay, and will continue to do so in the foreseeable future. These highly capable detectors allow for directional and topological, as well as calorimetric information to be extracted from signals on the...
Autores principales: | Jia, Mo, Kumar, Karan, Mackey, Liam S., Putra, Alexander, Vilela, Cristovao, Wilking, Michael J., Xia, Junjie, Yanagisawa, Chiaki, Yang, Karan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247294/ https://www.ncbi.nlm.nih.gov/pubmed/35782362 http://dx.doi.org/10.3389/fdata.2022.868333 |
Ejemplares similares
-
Maximum likelihood reconstruction of water Cherenkov events with deep generative neural networks
por: Jia, Mo, et al.
Publicado: (2022) -
A Novel Algorithm to Reconstruct Events in a Water Cherenkov Detector
por: Jia, Mo, et al.
Publicado: (2022) -
Using machine learning to improve neutron identification in water Cherenkov detectors
por: Jamieson, Blair, et al.
Publicado: (2022) -
Arrival times by Recurrent Neural Network for induced seismic events from a permanent network
por: Kolar, Petr, et al.
Publicado: (2023) -
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
por: Iiyama, Yutaro, et al.
Publicado: (2021)