Cargando…
Prediction of Liquid Magnetization Series Data in Agriculture Based on Enhanced CGAN
The magnetized water and fertilizer liquid can produce biological effect of magnetic field on crops, but its residual magnetic field strength is difficult to be expressed quantitatively in real time, and accurate prediction of it is helpful to define the scope of action of liquid magnetization. In t...
Autores principales: | Nie, Jing, Wang, Nianyi, Li, Jingbin, Wang, Yi, Wang, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247551/ https://www.ncbi.nlm.nih.gov/pubmed/35783969 http://dx.doi.org/10.3389/fpls.2022.929140 |
Ejemplares similares
-
Meta-learning prediction of physical and chemical properties of magnetized water and fertilizer based on LSTM
por: Nie, Jing, et al.
Publicado: (2021) -
Modelling and forecasting art movements with CGANs
por: Lisi, Edoardo, et al.
Publicado: (2020) -
Research on data imbalance in intrusion detection using CGAN
por: Zhao, Guangyu, et al.
Publicado: (2023) -
Anomaly Detection for Internet of Things Time Series Data Using Generative Adversarial Networks With Attention Mechanism in Smart Agriculture
por: Cheng, Weijun, et al.
Publicado: (2022) -
Predicting the distribution of COVID-19 through CGAN—Taking Macau as an example
por: Zheng, Liang, et al.
Publicado: (2023)