Cargando…
Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis
Membrane contact sites are specialized platforms formed between most organelles that enable them to exchange metabolites and influence the dynamics of each other. The yeast vacuole is a degradative organelle equivalent to the lysosome in higher eukaryotes with important roles in ion homeostasis and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247719/ https://www.ncbi.nlm.nih.gov/pubmed/35766971 http://dx.doi.org/10.1083/jcb.202103048 |
_version_ | 1784739221404123136 |
---|---|
author | Bisinski, Daniel D. Gomes Castro, Inês Mari, Muriel Walter, Stefan Fröhlich, Florian Schuldiner, Maya González Montoro, Ayelén |
author_facet | Bisinski, Daniel D. Gomes Castro, Inês Mari, Muriel Walter, Stefan Fröhlich, Florian Schuldiner, Maya González Montoro, Ayelén |
author_sort | Bisinski, Daniel D. |
collection | PubMed |
description | Membrane contact sites are specialized platforms formed between most organelles that enable them to exchange metabolites and influence the dynamics of each other. The yeast vacuole is a degradative organelle equivalent to the lysosome in higher eukaryotes with important roles in ion homeostasis and metabolism. Using a high-content microscopy screen, we identified Ymr160w (Cvm1, for contact of the vacuole membrane 1) as a novel component of three different contact sites of the vacuole: with the nuclear endoplasmic reticulum, the mitochondria, and the peroxisomes. At the vacuole–mitochondria contact site, Cvm1 acts as a tether independently of previously known tethers. We show that changes in Cvm1 levels affect sphingolipid homeostasis, altering the levels of multiple sphingolipid classes and the response of sphingolipid-sensing signaling pathways. Furthermore, the contact sites formed by Cvm1 are induced upon a decrease in sphingolipid levels. Altogether, our work identifies a novel protein that forms multiple contact sites and supports a role of lysosomal contacts in sphingolipid homeostasis. |
format | Online Article Text |
id | pubmed-9247719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92477192023-02-01 Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis Bisinski, Daniel D. Gomes Castro, Inês Mari, Muriel Walter, Stefan Fröhlich, Florian Schuldiner, Maya González Montoro, Ayelén J Cell Biol Article Membrane contact sites are specialized platforms formed between most organelles that enable them to exchange metabolites and influence the dynamics of each other. The yeast vacuole is a degradative organelle equivalent to the lysosome in higher eukaryotes with important roles in ion homeostasis and metabolism. Using a high-content microscopy screen, we identified Ymr160w (Cvm1, for contact of the vacuole membrane 1) as a novel component of three different contact sites of the vacuole: with the nuclear endoplasmic reticulum, the mitochondria, and the peroxisomes. At the vacuole–mitochondria contact site, Cvm1 acts as a tether independently of previously known tethers. We show that changes in Cvm1 levels affect sphingolipid homeostasis, altering the levels of multiple sphingolipid classes and the response of sphingolipid-sensing signaling pathways. Furthermore, the contact sites formed by Cvm1 are induced upon a decrease in sphingolipid levels. Altogether, our work identifies a novel protein that forms multiple contact sites and supports a role of lysosomal contacts in sphingolipid homeostasis. Rockefeller University Press 2022-06-29 /pmc/articles/PMC9247719/ /pubmed/35766971 http://dx.doi.org/10.1083/jcb.202103048 Text en © 2022 Bisinski et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Bisinski, Daniel D. Gomes Castro, Inês Mari, Muriel Walter, Stefan Fröhlich, Florian Schuldiner, Maya González Montoro, Ayelén Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title | Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title_full | Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title_fullStr | Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title_full_unstemmed | Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title_short | Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
title_sort | cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247719/ https://www.ncbi.nlm.nih.gov/pubmed/35766971 http://dx.doi.org/10.1083/jcb.202103048 |
work_keys_str_mv | AT bisinskidanield cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT gomescastroines cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT marimuriel cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT walterstefan cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT frohlichflorian cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT schuldinermaya cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis AT gonzalezmontoroayelen cvm1isacomponentofmultiplevacuolarcontactsitesrequiredforsphingolipidhomeostasis |