Cargando…
Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq
There is an increased awareness that the use of animals for compound-induced developmental neurotoxicity (DNT) testing has limitations. Animal-free innovations, especially the ones based on human stem cell-based models are pivotal in studying DNT since they can mimic processes relevant to human brai...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247748/ https://www.ncbi.nlm.nih.gov/pubmed/35700809 http://dx.doi.org/10.1016/j.chemosphere.2022.135298 |
_version_ | 1784739228159049728 |
---|---|
author | de Leeuw, Victoria C. van Oostrom, Conny T.M. Wackers, Paul F.K. Pennings, Jeroen L.A. Hodemaekers, Hennie M. Piersma, Aldert H. Hessel, Ellen V.S. |
author_facet | de Leeuw, Victoria C. van Oostrom, Conny T.M. Wackers, Paul F.K. Pennings, Jeroen L.A. Hodemaekers, Hennie M. Piersma, Aldert H. Hessel, Ellen V.S. |
author_sort | de Leeuw, Victoria C. |
collection | PubMed |
description | There is an increased awareness that the use of animals for compound-induced developmental neurotoxicity (DNT) testing has limitations. Animal-free innovations, especially the ones based on human stem cell-based models are pivotal in studying DNT since they can mimic processes relevant to human brain development. Here we present the human neural progenitor test (hNPT), a 10-day protocol in which neural progenitor cells differentiate into a neuron-astrocyte co-culture. The study aimed to characterise differentiation over time and to find neurodevelopmental processes sensitive to compound exposure using transcriptomics. 3992 genes regulated in unexposed control cultures (p ≤ 0.001, log2FC ≥ 1) showed Gene Ontology (GO-) term enrichment for neuronal and glial differentiation, neurite extension, synaptogenesis, and synaptic transmission. Exposure to known or suspected DNT compounds (acrylamide, chlorpyrifos, fluoxetine, methyl mercury, or valproic acid) at concentrations resulting in 95% cell viability each regulated unique combinations of GO-terms relating to neural progenitor proliferation, neuronal and glial differentiation, axon development, synaptogenesis, synaptic transmission, and apoptosis. Investigation of the GO-terms ‘neuron apoptotic process’ and ‘axon development’ revealed common genes that were responsive across compounds, and might be used as biomarkers for DNT. The GO-term ‘synaptic signalling’, on the contrary, whilst also responsive to all compounds tested, showed little overlap in gene expression regulation patterns between the conditions. This GO-term may articulate compound-specific effects that may be relevant for revealing differences in mechanism of toxicity. Given its focus on neural progenitor cell to mature multilineage neuronal cell maturation and its detailed molecular readout based on gene expression analysis, hNPT might have added value as a tool for neurodevelopmental toxicity testing in vitro. Further assessment of DNT-specific biomarkers that represent these processes needs further studies. |
format | Online Article Text |
id | pubmed-9247748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier Science Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-92477482022-10-01 Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq de Leeuw, Victoria C. van Oostrom, Conny T.M. Wackers, Paul F.K. Pennings, Jeroen L.A. Hodemaekers, Hennie M. Piersma, Aldert H. Hessel, Ellen V.S. Chemosphere Article There is an increased awareness that the use of animals for compound-induced developmental neurotoxicity (DNT) testing has limitations. Animal-free innovations, especially the ones based on human stem cell-based models are pivotal in studying DNT since they can mimic processes relevant to human brain development. Here we present the human neural progenitor test (hNPT), a 10-day protocol in which neural progenitor cells differentiate into a neuron-astrocyte co-culture. The study aimed to characterise differentiation over time and to find neurodevelopmental processes sensitive to compound exposure using transcriptomics. 3992 genes regulated in unexposed control cultures (p ≤ 0.001, log2FC ≥ 1) showed Gene Ontology (GO-) term enrichment for neuronal and glial differentiation, neurite extension, synaptogenesis, and synaptic transmission. Exposure to known or suspected DNT compounds (acrylamide, chlorpyrifos, fluoxetine, methyl mercury, or valproic acid) at concentrations resulting in 95% cell viability each regulated unique combinations of GO-terms relating to neural progenitor proliferation, neuronal and glial differentiation, axon development, synaptogenesis, synaptic transmission, and apoptosis. Investigation of the GO-terms ‘neuron apoptotic process’ and ‘axon development’ revealed common genes that were responsive across compounds, and might be used as biomarkers for DNT. The GO-term ‘synaptic signalling’, on the contrary, whilst also responsive to all compounds tested, showed little overlap in gene expression regulation patterns between the conditions. This GO-term may articulate compound-specific effects that may be relevant for revealing differences in mechanism of toxicity. Given its focus on neural progenitor cell to mature multilineage neuronal cell maturation and its detailed molecular readout based on gene expression analysis, hNPT might have added value as a tool for neurodevelopmental toxicity testing in vitro. Further assessment of DNT-specific biomarkers that represent these processes needs further studies. Elsevier Science Ltd 2022-10 /pmc/articles/PMC9247748/ /pubmed/35700809 http://dx.doi.org/10.1016/j.chemosphere.2022.135298 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article de Leeuw, Victoria C. van Oostrom, Conny T.M. Wackers, Paul F.K. Pennings, Jeroen L.A. Hodemaekers, Hennie M. Piersma, Aldert H. Hessel, Ellen V.S. Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title | Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title_full | Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title_fullStr | Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title_full_unstemmed | Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title_short | Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq |
title_sort | neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hnpt) revealed by rna-seq |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247748/ https://www.ncbi.nlm.nih.gov/pubmed/35700809 http://dx.doi.org/10.1016/j.chemosphere.2022.135298 |
work_keys_str_mv | AT deleeuwvictoriac neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT vanoostromconnytm neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT wackerspaulfk neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT penningsjeroenla neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT hodemaekershenniem neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT piersmaalderth neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq AT hesselellenvs neuronaldifferentiationpathwaysandcompoundinduceddevelopmentalneurotoxicityinthehumanneuralprogenitorcelltesthnptrevealedbyrnaseq |