Cargando…

Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems

Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narr...

Descripción completa

Detalles Bibliográficos
Autores principales: Coelho, Santiago, Baete, Steven H., Lemberskiy, Gregory, Ades-Aron, Benjamin, Barrol, Genevieve, Veraart, Jelle, Novikov, Dmitry S., Fieremans, Els
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248353/
https://www.ncbi.nlm.nih.gov/pubmed/35545197
http://dx.doi.org/10.1016/j.neuroimage.2022.119290
_version_ 1784739349487681536
author Coelho, Santiago
Baete, Steven H.
Lemberskiy, Gregory
Ades-Aron, Benjamin
Barrol, Genevieve
Veraart, Jelle
Novikov, Dmitry S.
Fieremans, Els
author_facet Coelho, Santiago
Baete, Steven H.
Lemberskiy, Gregory
Ades-Aron, Benjamin
Barrol, Genevieve
Veraart, Jelle
Novikov, Dmitry S.
Fieremans, Els
author_sort Coelho, Santiago
collection PubMed
description Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40 and 80 mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are ≲ 10% voxelwise and 1 – 4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
format Online
Article
Text
id pubmed-9248353
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-92483532022-08-15 Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems Coelho, Santiago Baete, Steven H. Lemberskiy, Gregory Ades-Aron, Benjamin Barrol, Genevieve Veraart, Jelle Novikov, Dmitry S. Fieremans, Els Neuroimage Article Estimating intra- and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40 and 80 mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are ≲ 10% voxelwise and 1 – 4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic. 2022-08-15 2022-05-08 /pmc/articles/PMC9248353/ /pubmed/35545197 http://dx.doi.org/10.1016/j.neuroimage.2022.119290 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
Coelho, Santiago
Baete, Steven H.
Lemberskiy, Gregory
Ades-Aron, Benjamin
Barrol, Genevieve
Veraart, Jelle
Novikov, Dmitry S.
Fieremans, Els
Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title_full Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title_fullStr Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title_full_unstemmed Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title_short Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems
title_sort reproducibility of the standard model of diffusion in white matter on clinical mri systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9248353/
https://www.ncbi.nlm.nih.gov/pubmed/35545197
http://dx.doi.org/10.1016/j.neuroimage.2022.119290
work_keys_str_mv AT coelhosantiago reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT baetestevenh reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT lemberskiygregory reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT adesaronbenjamin reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT barrolgenevieve reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT veraartjelle reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT novikovdmitrys reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems
AT fieremansels reproducibilityofthestandardmodelofdiffusioninwhitematteronclinicalmrisystems