Cargando…
Efficient Bayesian inference for mechanistic modelling with high-throughput data
Bayesian methods are routinely used to combine experimental data with detailed mathematical models to obtain insights into physical phenomena. However, the computational cost of Bayesian computation with detailed models has been a notorious problem. Moreover, while high-throughput data presents oppo...
Autores principales: | Martina Perez, Simon, Sailem, Heba, Baker, Ruth E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249175/ https://www.ncbi.nlm.nih.gov/pubmed/35727839 http://dx.doi.org/10.1371/journal.pcbi.1010191 |
Ejemplares similares
-
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016) -
Bayesian inference of relative fitness on high-throughput pooled competition assays
por: Razo-Mejia, Manuel, et al.
Publicado: (2023) -
Bayesian uncertainty quantification for data-driven equation learning
por: Martina-Perez, Simon, et al.
Publicado: (2021) -
KCML: a machine‐learning framework for inference of multi‐scale gene functions from genetic perturbation screens
por: Sailem, Heba Z, et al.
Publicado: (2020) -
Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair
por: Woods, Mae L., et al.
Publicado: (2016)