Cargando…
Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data
The brain performs various cognitive functions by learning the spatiotemporal salient features of the environment. This learning requires unsupervised segmentation of hierarchically organized spike sequences, but the underlying neural mechanism is only poorly understood. Here, we show that a recurre...
Autores principales: | Asabuki, Toshitake, Kokate, Prajakta, Fukai, Tomoki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249189/ https://www.ncbi.nlm.nih.gov/pubmed/35727828 http://dx.doi.org/10.1371/journal.pcbi.1010214 |
Ejemplares similares
-
Intrinsic bursts facilitate learning of Lévy flight movements in recurrent neural network models
por: Ohta, Morihiro, et al.
Publicado: (2022) -
Somatodendritic consistency check for temporal feature segmentation
por: Asabuki, Toshitake, et al.
Publicado: (2020) -
Interactive reservoir computing for chunking information streams
por: Asabuki, Toshitake, et al.
Publicado: (2018) -
Modeling the Repetition-Based Recovering of Acoustic and Visual Sources With Dendritic Neurons
por: Dellaferrera, Giorgia, et al.
Publicado: (2022) -
Learning Task-Related Activities From Independent Local-Field-Potential Components Across Motor Cortex Layers
por: Martín-Vázquez, Gonzalo, et al.
Publicado: (2018)