Cargando…
Single-cell specific and interpretable machine learning models for sparse scChIP-seq data imputation
MOTIVATION: Single-cell Chromatin ImmunoPrecipitation DNA-Sequencing (scChIP-seq) analysis is challenging due to data sparsity. High degree of sparsity in biological high-throughput single-cell data is generally handled with imputation methods that complete the data, but specific methods for scChIP-...
Autores principales: | Albrecht, Steffen, Andreani, Tommaso, Andrade-Navarro, Miguel A., Fontaine, Jean Fred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249201/ https://www.ncbi.nlm.nih.gov/pubmed/35776722 http://dx.doi.org/10.1371/journal.pone.0270043 |
Ejemplares similares
-
Computational identification of cell-specific variable regions in ChIP-seq data
por: Andreani, Tommaso, et al.
Publicado: (2020) -
seqMINER: an integrated ChIP-seq data interpretation platform
por: Ye, Tao, et al.
Publicado: (2011) -
ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
por: Wu, George, et al.
Publicado: (2013) -
Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data
por: Carroll, Thomas S., et al.
Publicado: (2014) -
HyperChIP: identification of hypervariable signals across ChIP-seq or ATAC-seq samples
por: Chen, Haojie, et al.
Publicado: (2022)