Cargando…

3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency

Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the un...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ziqing, Özçam, Mustafa, Abasht, Behnam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249230/
https://www.ncbi.nlm.nih.gov/pubmed/35776773
http://dx.doi.org/10.1371/journal.pone.0269534
_version_ 1784739533495992320
author Wang, Ziqing
Özçam, Mustafa
Abasht, Behnam
author_facet Wang, Ziqing
Özçam, Mustafa
Abasht, Behnam
author_sort Wang, Ziqing
collection PubMed
description Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2).
format Online
Article
Text
id pubmed-9249230
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-92492302022-07-02 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency Wang, Ziqing Özçam, Mustafa Abasht, Behnam PLoS One Research Article Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2). Public Library of Science 2022-07-01 /pmc/articles/PMC9249230/ /pubmed/35776773 http://dx.doi.org/10.1371/journal.pone.0269534 Text en © 2022 Wang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wang, Ziqing
Özçam, Mustafa
Abasht, Behnam
3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title_full 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title_fullStr 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title_full_unstemmed 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title_short 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
title_sort 3’utr-seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’utr and provides insight into molecular basis of feed efficiency
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249230/
https://www.ncbi.nlm.nih.gov/pubmed/35776773
http://dx.doi.org/10.1371/journal.pone.0269534
work_keys_str_mv AT wangziqing 3utrseqanalysisofchickenabdominaladiposetissuerevealswidespreadintronretentionin3utrandprovidesinsightintomolecularbasisoffeedefficiency
AT ozcammustafa 3utrseqanalysisofchickenabdominaladiposetissuerevealswidespreadintronretentionin3utrandprovidesinsightintomolecularbasisoffeedefficiency
AT abashtbehnam 3utrseqanalysisofchickenabdominaladiposetissuerevealswidespreadintronretentionin3utrandprovidesinsightintomolecularbasisoffeedefficiency