Cargando…
The risk of bias in denoising methods: Examples from neuroimaging
Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt to reduce noise and enhance signals of interest. In this paper, we draw attention to the...
Autor principal: | Kay, Kendrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249232/ https://www.ncbi.nlm.nih.gov/pubmed/35776751 http://dx.doi.org/10.1371/journal.pone.0270895 |
Ejemplares similares
-
Dynamic image denoising for voxel-wise quantification with Statistical Parametric Mapping in molecular neuroimaging
por: Tsartsalis, Stergios, et al.
Publicado: (2018) -
Visual Attention and the Neuroimage Bias
por: Baker, D. A., et al.
Publicado: (2013) -
GLMdenoise: a fast, automated technique for denoising task-based fMRI data
por: Kay, Kendrick N., et al.
Publicado: (2013) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
Method for Quantum Denoisers Using Convolutional Neural Network
por: Kim, Bong-Hyun, et al.
Publicado: (2022)