Cargando…
Error-based or target-based? A unified framework for learning in recurrent spiking networks
The field of recurrent neural networks is over-populated by a variety of proposed learning rules and protocols. The scope of this work is to define a generalized framework, to move a step forward towards the unification of this fragmented scenario. In the field of supervised learning, two opposite a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249234/ https://www.ncbi.nlm.nih.gov/pubmed/35727852 http://dx.doi.org/10.1371/journal.pcbi.1010221 |
_version_ | 1784739534496333824 |
---|---|
author | Capone, Cristiano Muratore, Paolo Paolucci, Pier Stanislao |
author_facet | Capone, Cristiano Muratore, Paolo Paolucci, Pier Stanislao |
author_sort | Capone, Cristiano |
collection | PubMed |
description | The field of recurrent neural networks is over-populated by a variety of proposed learning rules and protocols. The scope of this work is to define a generalized framework, to move a step forward towards the unification of this fragmented scenario. In the field of supervised learning, two opposite approaches stand out, error-based and target-based. This duality gave rise to a scientific debate on which learning framework is the most likely to be implemented in biological networks of neurons. Moreover, the existence of spikes raises the question of whether the coding of information is rate-based or spike-based. To face these questions, we proposed a learning model with two main parameters, the rank of the feedback learning matrix [Image: see text] and the tolerance to spike timing τ(⋆). We demonstrate that a low (high) rank [Image: see text] accounts for an error-based (target-based) learning rule, while high (low) tolerance to spike timing promotes rate-based (spike-based) coding. We show that in a store and recall task, high-ranks allow for lower MSE values, while low-ranks enable a faster convergence. Our framework naturally lends itself to Behavioral Cloning and allows for efficiently solving relevant closed-loop tasks, investigating what parameters [Image: see text] are optimal to solve a specific task. We found that a high [Image: see text] is essential for tasks that require retaining memory for a long time (Button and Food). On the other hand, this is not relevant for a motor task (the 2D Bipedal Walker). In this case, we find that precise spike-based coding enables optimal performances. Finally, we show that our theoretical formulation allows for defining protocols to estimate the rank of the feedback error in biological networks. We release a PyTorch implementation of our model supporting GPU parallelization. |
format | Online Article Text |
id | pubmed-9249234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92492342022-07-02 Error-based or target-based? A unified framework for learning in recurrent spiking networks Capone, Cristiano Muratore, Paolo Paolucci, Pier Stanislao PLoS Comput Biol Research Article The field of recurrent neural networks is over-populated by a variety of proposed learning rules and protocols. The scope of this work is to define a generalized framework, to move a step forward towards the unification of this fragmented scenario. In the field of supervised learning, two opposite approaches stand out, error-based and target-based. This duality gave rise to a scientific debate on which learning framework is the most likely to be implemented in biological networks of neurons. Moreover, the existence of spikes raises the question of whether the coding of information is rate-based or spike-based. To face these questions, we proposed a learning model with two main parameters, the rank of the feedback learning matrix [Image: see text] and the tolerance to spike timing τ(⋆). We demonstrate that a low (high) rank [Image: see text] accounts for an error-based (target-based) learning rule, while high (low) tolerance to spike timing promotes rate-based (spike-based) coding. We show that in a store and recall task, high-ranks allow for lower MSE values, while low-ranks enable a faster convergence. Our framework naturally lends itself to Behavioral Cloning and allows for efficiently solving relevant closed-loop tasks, investigating what parameters [Image: see text] are optimal to solve a specific task. We found that a high [Image: see text] is essential for tasks that require retaining memory for a long time (Button and Food). On the other hand, this is not relevant for a motor task (the 2D Bipedal Walker). In this case, we find that precise spike-based coding enables optimal performances. Finally, we show that our theoretical formulation allows for defining protocols to estimate the rank of the feedback error in biological networks. We release a PyTorch implementation of our model supporting GPU parallelization. Public Library of Science 2022-06-21 /pmc/articles/PMC9249234/ /pubmed/35727852 http://dx.doi.org/10.1371/journal.pcbi.1010221 Text en © 2022 Capone et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Capone, Cristiano Muratore, Paolo Paolucci, Pier Stanislao Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title | Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title_full | Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title_fullStr | Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title_full_unstemmed | Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title_short | Error-based or target-based? A unified framework for learning in recurrent spiking networks |
title_sort | error-based or target-based? a unified framework for learning in recurrent spiking networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249234/ https://www.ncbi.nlm.nih.gov/pubmed/35727852 http://dx.doi.org/10.1371/journal.pcbi.1010221 |
work_keys_str_mv | AT caponecristiano errorbasedortargetbasedaunifiedframeworkforlearninginrecurrentspikingnetworks AT muratorepaolo errorbasedortargetbasedaunifiedframeworkforlearninginrecurrentspikingnetworks AT paoluccipierstanislao errorbasedortargetbasedaunifiedframeworkforlearninginrecurrentspikingnetworks |