Cargando…

Diverse responses of pqqC‐ and phoD‐harbouring bacterial communities to variation in soil properties of Moso bamboo forests

Phosphate‐mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Wenhui, Xing, Yijing, Zhu, Ying, Gao, Ning, Ying, Yeqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249317/
https://www.ncbi.nlm.nih.gov/pubmed/35298867
http://dx.doi.org/10.1111/1751-7915.14029
Descripción
Sumario:Phosphate‐mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high‐throughput sequencing. We observed differentiated responses of pqqC‐ and phoD‐harbouring PMB communities to various soil conditions. There was significant variation among the sites in the diversity and structure of the phoD‐harbouring community, which correlated with variation in phosphorus levels and non‐capillary porosity; soil organic carbon and soil water content also affected the structure of the phoD‐harbouring community. However, no significant difference in the diversity of pqqC‐harbouring community was observed among different sites, while the structure of the pqqC‐harbouring bacteria community was affected by soil organic carbon and soil total nitrogen, but not soil phosphorus levels. Overall, changes in soil conditions affected the phoD‐harbouring community more than the pqqC‐harbouring community. These findings provide a new insight to explore the effects of soil conditions on microbial communities that solubilize inorganic phosphate and mineralize organic phosphate.