Cargando…

Phytobeneficial traits of rhizobacteria under the control of multiple molecular dialogues

Pseudomonads play crucial roles in plant growth promotion and control of plant diseases. However, under natural conditions, other microorganisms competing for the same nutrient resources in the rhizosphere may exert negative control over their phytobeneficial characteristics. We assessed the express...

Descripción completa

Detalles Bibliográficos
Autores principales: Laveilhé, Arnaud, Fochesato, Sylvain, Lalaouna, David, Heulin, Thierry, Achouak, Wafa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249325/
https://www.ncbi.nlm.nih.gov/pubmed/35502577
http://dx.doi.org/10.1111/1751-7915.14023
Descripción
Sumario:Pseudomonads play crucial roles in plant growth promotion and control of plant diseases. However, under natural conditions, other microorganisms competing for the same nutrient resources in the rhizosphere may exert negative control over their phytobeneficial characteristics. We assessed the expression of phytobeneficial genes involved in biocontrol, biostimulation and iron regulation such as, phlD, hcnA, acdS, and iron‐small regulatory RNAs prrF1 and prrF2 in Pseudomonas brassicacearum co‐cultivated with three phytopathogenic fungi, and two rhizobacteria in the presence or absence of Brassica napus, and in relation to iron availability. We found that the antifungal activity of P. brassicacearum depends mostly on the production of DAPG and not on HCN whose production is suppressed by fungi. We have also shown that the two‐competing bacterial strains modulate the plant growth promotion activity of P. brassicacearum by modifying the expression of phlD, hcnA and acdS according to iron availability. Overall, it allows us to better understand the complexity of the multiple molecular dialogues that take place underground between microorganisms and between plants and its rhizosphere microbiota and to show that synergy in favour of phytobeneficial gene expression may exist between different bacterial species.