Cargando…
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
Given the need for quantitative measurement and 3D visualisation of brain tumours, more and more attention has been paid to the automatic segmentation of tumour regions from brain tumour magnetic resonance (MR) images. In view of the uneven grey distribution of MR images and the fuzzy boundaries of...
Autores principales: | Ge, Ting, Zhan, Tianming, Li, Qinfeng, Mu, Shanxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249491/ https://www.ncbi.nlm.nih.gov/pubmed/35785083 http://dx.doi.org/10.1155/2022/3514988 |
Ejemplares similares
-
Brain Lesion Segmentation Based on Joint Constraints of Low-Rank Representation and Sparse Representation
por: Ge, Ting, et al.
Publicado: (2019) -
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation
por: Niu, Wenjia, et al.
Publicado: (2017) -
Exact Gaussian processes for massive datasets via non-stationary sparsity-discovering kernels
por: Noack, Marcus M., et al.
Publicado: (2023) -
Kernelized rank learning for personalized drug recommendation
por: He, Xiao, et al.
Publicado: (2018) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017)