Cargando…
Machine learning strategies for the structure-property relationship of copolymers
Establishing the structure-property relationship is extremely valuable for the molecular design of copolymers. However, machine learning (ML) models can incorporate both chemical composition and sequence distribution of monomers, and have the generalization ability to process various copolymer types...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249671/ https://www.ncbi.nlm.nih.gov/pubmed/35789847 http://dx.doi.org/10.1016/j.isci.2022.104585 |
_version_ | 1784739638079913984 |
---|---|
author | Tao, Lei Byrnes, John Varshney, Vikas Li, Ying |
author_facet | Tao, Lei Byrnes, John Varshney, Vikas Li, Ying |
author_sort | Tao, Lei |
collection | PubMed |
description | Establishing the structure-property relationship is extremely valuable for the molecular design of copolymers. However, machine learning (ML) models can incorporate both chemical composition and sequence distribution of monomers, and have the generalization ability to process various copolymer types (e.g., alternating, random, block, and gradient copolymers) with a unified approach are missing. To address this challenge, we formulate four different ML models for investigation, including a feedforward neural network (FFNN) model, a convolutional neural network (CNN) model, a recurrent neural network (RNN) model, and a combined FFNN/RNN (Fusion) model. We use various copolymer types to systematically validate the performance and generalizability of different models. We find that the RNN architecture that processes the monomer sequence information both forward and backward is a more suitable ML model for copolymers with better generalizability. As a supplement to polymer informatics, our proposed approach provides an efficient way for the evaluation of copolymers. |
format | Online Article Text |
id | pubmed-9249671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92496712022-07-03 Machine learning strategies for the structure-property relationship of copolymers Tao, Lei Byrnes, John Varshney, Vikas Li, Ying iScience Article Establishing the structure-property relationship is extremely valuable for the molecular design of copolymers. However, machine learning (ML) models can incorporate both chemical composition and sequence distribution of monomers, and have the generalization ability to process various copolymer types (e.g., alternating, random, block, and gradient copolymers) with a unified approach are missing. To address this challenge, we formulate four different ML models for investigation, including a feedforward neural network (FFNN) model, a convolutional neural network (CNN) model, a recurrent neural network (RNN) model, and a combined FFNN/RNN (Fusion) model. We use various copolymer types to systematically validate the performance and generalizability of different models. We find that the RNN architecture that processes the monomer sequence information both forward and backward is a more suitable ML model for copolymers with better generalizability. As a supplement to polymer informatics, our proposed approach provides an efficient way for the evaluation of copolymers. Elsevier 2022-06-10 /pmc/articles/PMC9249671/ /pubmed/35789847 http://dx.doi.org/10.1016/j.isci.2022.104585 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Tao, Lei Byrnes, John Varshney, Vikas Li, Ying Machine learning strategies for the structure-property relationship of copolymers |
title | Machine learning strategies for the structure-property relationship of copolymers |
title_full | Machine learning strategies for the structure-property relationship of copolymers |
title_fullStr | Machine learning strategies for the structure-property relationship of copolymers |
title_full_unstemmed | Machine learning strategies for the structure-property relationship of copolymers |
title_short | Machine learning strategies for the structure-property relationship of copolymers |
title_sort | machine learning strategies for the structure-property relationship of copolymers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249671/ https://www.ncbi.nlm.nih.gov/pubmed/35789847 http://dx.doi.org/10.1016/j.isci.2022.104585 |
work_keys_str_mv | AT taolei machinelearningstrategiesforthestructurepropertyrelationshipofcopolymers AT byrnesjohn machinelearningstrategiesforthestructurepropertyrelationshipofcopolymers AT varshneyvikas machinelearningstrategiesforthestructurepropertyrelationshipofcopolymers AT liying machinelearningstrategiesforthestructurepropertyrelationshipofcopolymers |