Cargando…
Machine learning strategies for the structure-property relationship of copolymers
Establishing the structure-property relationship is extremely valuable for the molecular design of copolymers. However, machine learning (ML) models can incorporate both chemical composition and sequence distribution of monomers, and have the generalization ability to process various copolymer types...
Autores principales: | Tao, Lei, Byrnes, John, Varshney, Vikas, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249671/ https://www.ncbi.nlm.nih.gov/pubmed/35789847 http://dx.doi.org/10.1016/j.isci.2022.104585 |
Ejemplares similares
-
Unified machine learning protocol for copolymer structure-property predictions
por: Tao, Lei, et al.
Publicado: (2022) -
Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship
por: Cimrová, Věra, et al.
Publicado: (2023) -
Structure/Properties Relationship of Anionically Synthesized Diblock Copolymers “Grafted to” Chemically Modified Graphene
por: Katsigiannopoulos, Dimitrios, et al.
Publicado: (2021) -
Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models
por: Mao, Jiashun, et al.
Publicado: (2021) -
Structure-Function Relationships in PMA and PMAT Series Copolymers for Polymer Solar Cells
por: Chen, Jhe-Han, et al.
Publicado: (2018)