Cargando…
Automated image curation in diabetic retinopathy screening using deep learning
Diabetic retinopathy (DR) screening images are heterogeneous and contain undesirable non-retinal, incorrect field and ungradable samples which require curation, a laborious task to perform manually. We developed and validated single and multi-output laterality, retinal presence, retinal field and gr...
Autores principales: | Nderitu, Paul, Nunez do Rio, Joan M., Webster, Ms Laura, Mann, Samantha S., Hopkins, David, Cardoso, M. Jorge, Modat, Marc, Bergeles, Christos, Jackson, Timothy L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249740/ https://www.ncbi.nlm.nih.gov/pubmed/35778615 http://dx.doi.org/10.1038/s41598-022-15491-1 |
Ejemplares similares
-
Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening
por: Nunez do Rio, Joan M., et al.
Publicado: (2022) -
Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings
por: Nunez do Rio, Joan M., et al.
Publicado: (2023) -
Deep learning for gradability classification of handheld, non-mydriatic retinal images
por: Nderitu, Paul, et al.
Publicado: (2021) -
Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography
por: Nunez do Rio, Joan M., et al.
Publicado: (2020) -
Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease
por: Tan, Zachary, et al.
Publicado: (2019)