Cargando…

Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration

A localized nanoparticle insertion scheme is developed to decouple electron injection from laser evolution in laser wakefield acceleration. Here we report the experimental realization of a controllable electron injection by the nanoparticle insertion method into a plasma medium, where the injection...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jiancai, Bae, Leejin, Ezzat, Mohamed, Kim, Hyung Taek, Yang, Jeong Moon, Lee, Sang Hwa, Yoon, Jin Woo, Sung, Jae Hee, Lee, Seong Ku, Ji, Liangliang, Shen, Baifei, Nam, Chang Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249746/
https://www.ncbi.nlm.nih.gov/pubmed/35778463
http://dx.doi.org/10.1038/s41598-022-15125-6
_version_ 1784739654742835200
author Xu, Jiancai
Bae, Leejin
Ezzat, Mohamed
Kim, Hyung Taek
Yang, Jeong Moon
Lee, Sang Hwa
Yoon, Jin Woo
Sung, Jae Hee
Lee, Seong Ku
Ji, Liangliang
Shen, Baifei
Nam, Chang Hee
author_facet Xu, Jiancai
Bae, Leejin
Ezzat, Mohamed
Kim, Hyung Taek
Yang, Jeong Moon
Lee, Sang Hwa
Yoon, Jin Woo
Sung, Jae Hee
Lee, Seong Ku
Ji, Liangliang
Shen, Baifei
Nam, Chang Hee
author_sort Xu, Jiancai
collection PubMed
description A localized nanoparticle insertion scheme is developed to decouple electron injection from laser evolution in laser wakefield acceleration. Here we report the experimental realization of a controllable electron injection by the nanoparticle insertion method into a plasma medium, where the injection position is localized within the short range of 100 μm. Nanoparticles were generated by the laser ablation process of a copper blade target using a 3-ns 532-nm laser pulse with fluence above 100 J/cm(2). The produced electron bunches with a beam charge above 300 pC and divergence of around 12 mrad show the injection probability over 90% after optimizing the ablation laser energy and the temporal delay between the ablation and the main laser pulses. Since this nanoparticle insertion method can avoid the disturbing effects of electron injection process on laser evolution, the stable high-charge injection method can provide a suitable electron injector for multi-GeV electron sources from low-density plasmas.
format Online
Article
Text
id pubmed-9249746
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92497462022-07-03 Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration Xu, Jiancai Bae, Leejin Ezzat, Mohamed Kim, Hyung Taek Yang, Jeong Moon Lee, Sang Hwa Yoon, Jin Woo Sung, Jae Hee Lee, Seong Ku Ji, Liangliang Shen, Baifei Nam, Chang Hee Sci Rep Article A localized nanoparticle insertion scheme is developed to decouple electron injection from laser evolution in laser wakefield acceleration. Here we report the experimental realization of a controllable electron injection by the nanoparticle insertion method into a plasma medium, where the injection position is localized within the short range of 100 μm. Nanoparticles were generated by the laser ablation process of a copper blade target using a 3-ns 532-nm laser pulse with fluence above 100 J/cm(2). The produced electron bunches with a beam charge above 300 pC and divergence of around 12 mrad show the injection probability over 90% after optimizing the ablation laser energy and the temporal delay between the ablation and the main laser pulses. Since this nanoparticle insertion method can avoid the disturbing effects of electron injection process on laser evolution, the stable high-charge injection method can provide a suitable electron injector for multi-GeV electron sources from low-density plasmas. Nature Publishing Group UK 2022-07-01 /pmc/articles/PMC9249746/ /pubmed/35778463 http://dx.doi.org/10.1038/s41598-022-15125-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xu, Jiancai
Bae, Leejin
Ezzat, Mohamed
Kim, Hyung Taek
Yang, Jeong Moon
Lee, Sang Hwa
Yoon, Jin Woo
Sung, Jae Hee
Lee, Seong Ku
Ji, Liangliang
Shen, Baifei
Nam, Chang Hee
Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title_full Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title_fullStr Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title_full_unstemmed Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title_short Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
title_sort nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249746/
https://www.ncbi.nlm.nih.gov/pubmed/35778463
http://dx.doi.org/10.1038/s41598-022-15125-6
work_keys_str_mv AT xujiancai nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT baeleejin nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT ezzatmohamed nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT kimhyungtaek nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT yangjeongmoon nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT leesanghwa nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT yoonjinwoo nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT sungjaehee nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT leeseongku nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT jiliangliang nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT shenbaifei nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration
AT namchanghee nanoparticleinsertionschemetodecoupleelectroninjectionfromlaserevolutioninlaserwakefieldacceleration