Cargando…

M2 macrophage-derived exosomal microRNA-411-5p impedes the activation of hepatic stellate cells by targeting CAMSAP1 in NASH model

Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Zhiping, Yang, Xiaoan, Liu, Xiaoquan, Sun, Yinfang, Yu, Piaojian, Xu, Fen, Deng, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249826/
https://www.ncbi.nlm.nih.gov/pubmed/35789846
http://dx.doi.org/10.1016/j.isci.2022.104597
Descripción
Sumario:Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH.