Cargando…
Spectral pruning of fully connected layers
Training of neural networks can be reformulated in spectral space, by allowing eigenvalues and eigenvectors of the network to act as target of the optimization instead of the individual weights. Working in this setting, we show that the eigenvalues can be used to rank the nodes’ importance within th...
Autores principales: | Buffoni, Lorenzo, Civitelli, Enrico, Giambagli, Lorenzo, Chicchi, Lorenzo, Fanelli, Duccio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249877/ https://www.ncbi.nlm.nih.gov/pubmed/35778586 http://dx.doi.org/10.1038/s41598-022-14805-7 |
Ejemplares similares
-
Machine learning in spectral domain
por: Giambagli, Lorenzo, et al.
Publicado: (2021) -
Reconstruction scheme for excitatory and inhibitory dynamics with quenched disorder: application to zebrafish imaging
por: Chicchi, Lorenzo, et al.
Publicado: (2021) -
Characterization of Some Stilbenoids Extracted from Two Cultivars of Lambrusco—Vitis vinifera Species: An Opportunity to Valorize Pruning Canes for a More Sustainable Viticulture
por: D’Eusanio, Veronica, et al.
Publicado: (2023) -
Optimizing the Deep Neural Networks by Layer-Wise Refined Pruning and the Acceleration on FPGA
por: Li, Hengyi, et al.
Publicado: (2022) -
Pruning Wound Protection Products Induce Alterations in the Wood Mycobiome Profile of Grapevines
por: Del Frari, Giovanni, et al.
Publicado: (2023)