Cargando…

Multimodal NASH prognosis using 3D imaging flow cytometry and artificial intelligence to characterize liver cells

To improve the understanding of the complex biological process underlying the development of non-alcoholic steatohepatitis (NASH), 3D imaging flow cytometry (3D-IFC) with transmission and side-scattered images were used to characterize hepatic stellate cell (HSC) and liver endothelial cell (LEC) mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Subramanian, Ramkumar, Tang, Rui, Zhang, Zunming, Joshi, Vaidehi, Miner, Jeffrey N., Lo, Yu-Hwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249889/
https://www.ncbi.nlm.nih.gov/pubmed/35778474
http://dx.doi.org/10.1038/s41598-022-15364-7
Descripción
Sumario:To improve the understanding of the complex biological process underlying the development of non-alcoholic steatohepatitis (NASH), 3D imaging flow cytometry (3D-IFC) with transmission and side-scattered images were used to characterize hepatic stellate cell (HSC) and liver endothelial cell (LEC) morphology at single-cell resolution. In this study, HSC and LEC were obtained from biopsy-proven NASH subjects with early-stage NASH (F2-F3) and healthy controls. Here, we applied single-cell imaging and 3D digital reconstructions of healthy and diseased cells to analyze a spatially resolved set of morphometric cellular and texture parameters that showed regression with disease progression. By developing a customized autoencoder convolutional neural network (CNN) based on label-free cell transmission and side scattering images obtained from a 3D imaging flow cytometer, we demonstrated key regulated cell types involved in the development of NASH and cell classification performance superior to conventional machine learning methods.