Cargando…

Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells

Stability is one of the most important challenges facing material research for organic solar cells (OSC) on their path to further commercialization. In the high-performance material system PM6:Y6 studied here, we investigate degradation mechanisms of inverted photovoltaic devices. We have identified...

Descripción completa

Detalles Bibliográficos
Autores principales: Wöpke, Christopher, Göhler, Clemens, Saladina, Maria, Du, Xiaoyan, Nian, Li, Greve, Christopher, Zhu, Chenhui, Yallum, Kaila M., Hofstetter, Yvonne J., Becker-Koch, David, Li, Ning, Heumüller, Thomas, Milekhin, Ilya, Zahn, Dietrich R. T., Brabec, Christoph J., Banerji, Natalie, Vaynzof, Yana, Herzig, Eva M., MacKenzie, Roderick C. I., Deibel, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249898/
https://www.ncbi.nlm.nih.gov/pubmed/35778394
http://dx.doi.org/10.1038/s41467-022-31326-z
_version_ 1784739690511859712
author Wöpke, Christopher
Göhler, Clemens
Saladina, Maria
Du, Xiaoyan
Nian, Li
Greve, Christopher
Zhu, Chenhui
Yallum, Kaila M.
Hofstetter, Yvonne J.
Becker-Koch, David
Li, Ning
Heumüller, Thomas
Milekhin, Ilya
Zahn, Dietrich R. T.
Brabec, Christoph J.
Banerji, Natalie
Vaynzof, Yana
Herzig, Eva M.
MacKenzie, Roderick C. I.
Deibel, Carsten
author_facet Wöpke, Christopher
Göhler, Clemens
Saladina, Maria
Du, Xiaoyan
Nian, Li
Greve, Christopher
Zhu, Chenhui
Yallum, Kaila M.
Hofstetter, Yvonne J.
Becker-Koch, David
Li, Ning
Heumüller, Thomas
Milekhin, Ilya
Zahn, Dietrich R. T.
Brabec, Christoph J.
Banerji, Natalie
Vaynzof, Yana
Herzig, Eva M.
MacKenzie, Roderick C. I.
Deibel, Carsten
author_sort Wöpke, Christopher
collection PubMed
description Stability is one of the most important challenges facing material research for organic solar cells (OSC) on their path to further commercialization. In the high-performance material system PM6:Y6 studied here, we investigate degradation mechanisms of inverted photovoltaic devices. We have identified two distinct degradation pathways: one requires the presence of both illumination and oxygen and features a short-circuit current reduction, the other one is induced thermally and marked by severe losses of open-circuit voltage and fill factor. We focus our investigation on the thermally accelerated degradation. Our findings show that bulk material properties and interfaces remain remarkably stable, however, aging-induced defect state formation in the active layer remains the primary cause of thermal degradation. The increased trap density leads to higher non-radiative recombination, which limits the open-circuit voltage and lowers the charge carrier mobility in the photoactive layer. Furthermore, we find the trap-induced transport resistance to be the major reason for the drop in fill factor. Our results suggest that device lifetimes could be significantly increased by marginally suppressing trap formation, leading to a bright future for OSC.
format Online
Article
Text
id pubmed-9249898
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92498982022-07-03 Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells Wöpke, Christopher Göhler, Clemens Saladina, Maria Du, Xiaoyan Nian, Li Greve, Christopher Zhu, Chenhui Yallum, Kaila M. Hofstetter, Yvonne J. Becker-Koch, David Li, Ning Heumüller, Thomas Milekhin, Ilya Zahn, Dietrich R. T. Brabec, Christoph J. Banerji, Natalie Vaynzof, Yana Herzig, Eva M. MacKenzie, Roderick C. I. Deibel, Carsten Nat Commun Article Stability is one of the most important challenges facing material research for organic solar cells (OSC) on their path to further commercialization. In the high-performance material system PM6:Y6 studied here, we investigate degradation mechanisms of inverted photovoltaic devices. We have identified two distinct degradation pathways: one requires the presence of both illumination and oxygen and features a short-circuit current reduction, the other one is induced thermally and marked by severe losses of open-circuit voltage and fill factor. We focus our investigation on the thermally accelerated degradation. Our findings show that bulk material properties and interfaces remain remarkably stable, however, aging-induced defect state formation in the active layer remains the primary cause of thermal degradation. The increased trap density leads to higher non-radiative recombination, which limits the open-circuit voltage and lowers the charge carrier mobility in the photoactive layer. Furthermore, we find the trap-induced transport resistance to be the major reason for the drop in fill factor. Our results suggest that device lifetimes could be significantly increased by marginally suppressing trap formation, leading to a bright future for OSC. Nature Publishing Group UK 2022-07-01 /pmc/articles/PMC9249898/ /pubmed/35778394 http://dx.doi.org/10.1038/s41467-022-31326-z Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wöpke, Christopher
Göhler, Clemens
Saladina, Maria
Du, Xiaoyan
Nian, Li
Greve, Christopher
Zhu, Chenhui
Yallum, Kaila M.
Hofstetter, Yvonne J.
Becker-Koch, David
Li, Ning
Heumüller, Thomas
Milekhin, Ilya
Zahn, Dietrich R. T.
Brabec, Christoph J.
Banerji, Natalie
Vaynzof, Yana
Herzig, Eva M.
MacKenzie, Roderick C. I.
Deibel, Carsten
Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title_full Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title_fullStr Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title_full_unstemmed Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title_short Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
title_sort traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249898/
https://www.ncbi.nlm.nih.gov/pubmed/35778394
http://dx.doi.org/10.1038/s41467-022-31326-z
work_keys_str_mv AT wopkechristopher trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT gohlerclemens trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT saladinamaria trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT duxiaoyan trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT nianli trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT grevechristopher trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT zhuchenhui trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT yallumkailam trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT hofstetteryvonnej trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT beckerkochdavid trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT lining trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT heumullerthomas trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT milekhinilya trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT zahndietrichrt trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT brabecchristophj trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT banerjinatalie trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT vaynzofyana trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT herzigevam trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT mackenzieroderickci trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells
AT deibelcarsten trapsandtransportresistancearethenextfrontiersforstablenonfullereneacceptorsolarcells