Cargando…
Low-dose shift- and rotation-invariant diffraction recognition imaging
A low-dose imaging technique which uses recognition rather than recording of a full high-resolution image is proposed. A structural hypothesis is verified by probing the object with only a few particles (photons, electrons). Each scattered particle is detected in the far field and its position on th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249920/ https://www.ncbi.nlm.nih.gov/pubmed/35778504 http://dx.doi.org/10.1038/s41598-022-15486-y |
Sumario: | A low-dose imaging technique which uses recognition rather than recording of a full high-resolution image is proposed. A structural hypothesis is verified by probing the object with only a few particles (photons, electrons). Each scattered particle is detected in the far field and its position on the detector is analysed by applying Bayesian statistics. Already a few detected particles are sufficient to confirm a structural hypothesis at a probability exceeding 95%. As an example, the method is demonstrated as an application in optical character recognition, where a hand-written number is recognized from a set of different written numbers. In other provided examples, the structural hypothesis of a single macromolecule is recognized from a diffraction pattern acquired at an extremely low radiation dose, less than one X-ray photon or electron per Å(2), thus leaving the macromolecule practically without any radiation damage. The proposed principle of low-dose recognition can be utilized in various applications, ranging from optical character recognition and optical security elements to recognizing a certain protein or its conformation. |
---|