Cargando…
Development and Validation of a Personalized Model With Transfer Learning for Acute Kidney Injury Risk Estimation Using Electronic Health Records
IMPORTANCE: Acute kidney injury (AKI) is a heterogeneous syndrome prevalent among hospitalized patients. Personalized risk estimation and risk factor identification may allow effective intervention and improved outcomes. OBJECTIVE: To develop and validate personalized AKI risk estimation models usin...
Autores principales: | Liu, Kang, Zhang, Xiangzhou, Chen, Weiqi, Yu, Alan S. L., Kellum, John A., Matheny, Michael E., Simpson, Steven Q., Hu, Yong, Liu, Mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250052/ https://www.ncbi.nlm.nih.gov/pubmed/35796212 http://dx.doi.org/10.1001/jamanetworkopen.2022.19776 |
Ejemplares similares
-
Causal risk factor discovery for severe acute kidney injury using electronic health records
por: Chen, Weiqi, et al.
Publicado: (2018) -
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
por: Song, Xing, et al.
Publicado: (2020) -
Feature Ranking in Predictive Models for Hospital-Acquired Acute Kidney Injury
por: Wu, Lijuan, et al.
Publicado: (2018) -
Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study
por: Wu, Lijuan, et al.
Publicado: (2020) -
Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records
por: He, Jianqin, et al.
Publicado: (2018)