Cargando…

Myoelectric interface training enables targeted reduction in abnormal muscle co-activation

BACKGROUND: Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Gang, Kishta, Ameen, Mugler, Emily, Slutzky, Marc W., Roh, Jinsook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250207/
https://www.ncbi.nlm.nih.gov/pubmed/35778757
http://dx.doi.org/10.1186/s12984-022-01045-z
Descripción
Sumario:BACKGROUND: Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS: We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS: There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training—that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS: These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do—enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1)