Cargando…

Using an optimized generative model to infer the progression of complications in type 2 diabetes patients

BACKGROUND: People live a long time in pre-diabetes/early diabetes without a formal diagnosis or management. Heterogeneity of progression coupled with deficiencies in electronic health records related to incomplete data, discrete events, and irregular event intervals make identification of pre-diabe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoxia, Lin, Yifei, Xiong, Yun, Zhang, Suhua, He, Yanming, He, Yuqing, Zhang, Zhikun, Plasek, Joseph M., Zhou, Li, Bates, David W., Tang, Chunlei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250218/
https://www.ncbi.nlm.nih.gov/pubmed/35778708
http://dx.doi.org/10.1186/s12911-022-01915-5
Descripción
Sumario:BACKGROUND: People live a long time in pre-diabetes/early diabetes without a formal diagnosis or management. Heterogeneity of progression coupled with deficiencies in electronic health records related to incomplete data, discrete events, and irregular event intervals make identification of pre-diabetes and critical points of diabetes progression challenging. METHODS: We utilized longitudinal electronic health records of 9298 patients with type 2 diabetes or prediabetes from 2005 to 2016 from a large regional healthcare delivery network in China. We optimized a generative Markov-Bayesian-based model to generate 5000 synthetic illness trajectories. The synthetic data were manually reviewed by endocrinologists. RESULTS: We build an optimized generative progression model for type 2 diabetes using anchor information to reduce the number of parameters learning in the third layer of the model from [Formula: see text] to [Formula: see text] , where [Formula: see text] is the number of clinical findings, [Formula: see text] is the number of complications, [Formula: see text] is the number of anchors. Based on this model, we infer the relationships between progression stages, the onset of complication categories, and the associated diagnoses during the whole progression of type 2 diabetes using electronic health records. DISCUSSION: Our findings indicate that 55.3% of single complications and 31.8% of complication patterns could be predicted early and managed appropriately to potentially delay (as it is a progressive disease) or prevented (by lifestyle modifications that keep patient from developing/triggering diabetes in the first place). CONCLUSIONS: The full type 2 diabetes patient trajectories generated by the chronic disease progression model can counter a lack of real-world evidence of desired longitudinal timeframe while facilitating population health management.