Cargando…
Homology-directed repair involves multiple strand invasion cycles in fission yeast
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250353/ https://www.ncbi.nlm.nih.gov/pubmed/35080989 http://dx.doi.org/10.1091/mbc.E20-07-0433 |
_version_ | 1784739795018186752 |
---|---|
author | Vines, Amanda J. Cox, Kenneth Leland, Bryan A. King, Megan C. |
author_facet | Vines, Amanda J. Cox, Kenneth Leland, Bryan A. King, Megan C. |
author_sort | Vines, Amanda J. |
collection | PubMed |
description | Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair. |
format | Online Article Text |
id | pubmed-9250353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-92503532022-07-07 Homology-directed repair involves multiple strand invasion cycles in fission yeast Vines, Amanda J. Cox, Kenneth Leland, Bryan A. King, Megan C. Mol Biol Cell Articles Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair. The American Society for Cell Biology 2022-03-11 /pmc/articles/PMC9250353/ /pubmed/35080989 http://dx.doi.org/10.1091/mbc.E20-07-0433 Text en © 2022 Vines et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. https://creativecommons.org/licenses/by-nc-sa/3.0/This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial-Share Alike 4.0 International Creative Commons License. |
spellingShingle | Articles Vines, Amanda J. Cox, Kenneth Leland, Bryan A. King, Megan C. Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title | Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title_full | Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title_fullStr | Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title_full_unstemmed | Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title_short | Homology-directed repair involves multiple strand invasion cycles in fission yeast |
title_sort | homology-directed repair involves multiple strand invasion cycles in fission yeast |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250353/ https://www.ncbi.nlm.nih.gov/pubmed/35080989 http://dx.doi.org/10.1091/mbc.E20-07-0433 |
work_keys_str_mv | AT vinesamandaj homologydirectedrepairinvolvesmultiplestrandinvasioncyclesinfissionyeast AT coxkenneth homologydirectedrepairinvolvesmultiplestrandinvasioncyclesinfissionyeast AT lelandbryana homologydirectedrepairinvolvesmultiplestrandinvasioncyclesinfissionyeast AT kingmeganc homologydirectedrepairinvolvesmultiplestrandinvasioncyclesinfissionyeast |