Cargando…
A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lac...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250494/ https://www.ncbi.nlm.nih.gov/pubmed/35780211 http://dx.doi.org/10.1038/s41467-022-31236-0 |
_version_ | 1784739825639751680 |
---|---|
author | Green, Anna G. Yoon, Chang Ho Chen, Michael L. Ektefaie, Yasha Fina, Mack Freschi, Luca Gröschel, Matthias I. Kohane, Isaac Beam, Andrew Farhat, Maha |
author_facet | Green, Anna G. Yoon, Chang Ho Chen, Michael L. Ektefaie, Yasha Fina, Mack Freschi, Luca Gröschel, Matthias I. Kohane, Isaac Beam, Andrew Farhat, Maha |
author_sort | Green, Anna G. |
collection | PubMed |
description | Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lack of interpretability, especially in deep learning methods. Here, we present two deep convolutional neural networks that predict antibiotic resistance phenotypes of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13 antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1% and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in the genome not previously associated with resistance. The CNN models permit functional variant discovery, biologically meaningful interpretation, and clinical applicability. |
format | Online Article Text |
id | pubmed-9250494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92504942022-07-04 A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis Green, Anna G. Yoon, Chang Ho Chen, Michael L. Ektefaie, Yasha Fina, Mack Freschi, Luca Gröschel, Matthias I. Kohane, Isaac Beam, Andrew Farhat, Maha Nat Commun Article Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lack of interpretability, especially in deep learning methods. Here, we present two deep convolutional neural networks that predict antibiotic resistance phenotypes of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13 antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1% and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in the genome not previously associated with resistance. The CNN models permit functional variant discovery, biologically meaningful interpretation, and clinical applicability. Nature Publishing Group UK 2022-07-02 /pmc/articles/PMC9250494/ /pubmed/35780211 http://dx.doi.org/10.1038/s41467-022-31236-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Green, Anna G. Yoon, Chang Ho Chen, Michael L. Ektefaie, Yasha Fina, Mack Freschi, Luca Gröschel, Matthias I. Kohane, Isaac Beam, Andrew Farhat, Maha A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title | A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title_full | A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title_fullStr | A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title_full_unstemmed | A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title_short | A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis |
title_sort | convolutional neural network highlights mutations relevant to antimicrobial resistance in mycobacterium tuberculosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250494/ https://www.ncbi.nlm.nih.gov/pubmed/35780211 http://dx.doi.org/10.1038/s41467-022-31236-0 |
work_keys_str_mv | AT greenannag aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT yoonchangho aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT chenmichaell aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT ektefaieyasha aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT finamack aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT freschiluca aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT groschelmatthiasi aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT kohaneisaac aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT beamandrew aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT farhatmaha aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT greenannag convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT yoonchangho convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT chenmichaell convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT ektefaieyasha convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT finamack convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT freschiluca convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT groschelmatthiasi convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT kohaneisaac convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT beamandrew convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis AT farhatmaha convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis |