Cargando…

A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis

Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lac...

Descripción completa

Detalles Bibliográficos
Autores principales: Green, Anna G., Yoon, Chang Ho, Chen, Michael L., Ektefaie, Yasha, Fina, Mack, Freschi, Luca, Gröschel, Matthias I., Kohane, Isaac, Beam, Andrew, Farhat, Maha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250494/
https://www.ncbi.nlm.nih.gov/pubmed/35780211
http://dx.doi.org/10.1038/s41467-022-31236-0
_version_ 1784739825639751680
author Green, Anna G.
Yoon, Chang Ho
Chen, Michael L.
Ektefaie, Yasha
Fina, Mack
Freschi, Luca
Gröschel, Matthias I.
Kohane, Isaac
Beam, Andrew
Farhat, Maha
author_facet Green, Anna G.
Yoon, Chang Ho
Chen, Michael L.
Ektefaie, Yasha
Fina, Mack
Freschi, Luca
Gröschel, Matthias I.
Kohane, Isaac
Beam, Andrew
Farhat, Maha
author_sort Green, Anna G.
collection PubMed
description Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lack of interpretability, especially in deep learning methods. Here, we present two deep convolutional neural networks that predict antibiotic resistance phenotypes of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13 antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1% and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in the genome not previously associated with resistance. The CNN models permit functional variant discovery, biologically meaningful interpretation, and clinical applicability.
format Online
Article
Text
id pubmed-9250494
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92504942022-07-04 A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis Green, Anna G. Yoon, Chang Ho Chen, Michael L. Ektefaie, Yasha Fina, Mack Freschi, Luca Gröschel, Matthias I. Kohane, Isaac Beam, Andrew Farhat, Maha Nat Commun Article Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lack of interpretability, especially in deep learning methods. Here, we present two deep convolutional neural networks that predict antibiotic resistance phenotypes of M. tuberculosis isolates: a multi-drug CNN (MD-CNN), that predicts resistance to 13 antibiotics based on 18 genomic loci, with AUCs 82.6-99.5% and higher sensitivity than state-of-the-art methods; and a set of 13 single-drug CNNs (SD-CNN) with AUCs 80.1-97.1% and higher specificity than the previous state-of-the-art. Using saliency methods to evaluate the contribution of input sequence features to the SD-CNN predictions, we identify 18 sites in the genome not previously associated with resistance. The CNN models permit functional variant discovery, biologically meaningful interpretation, and clinical applicability. Nature Publishing Group UK 2022-07-02 /pmc/articles/PMC9250494/ /pubmed/35780211 http://dx.doi.org/10.1038/s41467-022-31236-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Green, Anna G.
Yoon, Chang Ho
Chen, Michael L.
Ektefaie, Yasha
Fina, Mack
Freschi, Luca
Gröschel, Matthias I.
Kohane, Isaac
Beam, Andrew
Farhat, Maha
A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_full A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_fullStr A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_full_unstemmed A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_short A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
title_sort convolutional neural network highlights mutations relevant to antimicrobial resistance in mycobacterium tuberculosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250494/
https://www.ncbi.nlm.nih.gov/pubmed/35780211
http://dx.doi.org/10.1038/s41467-022-31236-0
work_keys_str_mv AT greenannag aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT yoonchangho aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT chenmichaell aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT ektefaieyasha aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT finamack aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT freschiluca aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT groschelmatthiasi aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT kohaneisaac aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT beamandrew aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT farhatmaha aconvolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT greenannag convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT yoonchangho convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT chenmichaell convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT ektefaieyasha convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT finamack convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT freschiluca convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT groschelmatthiasi convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT kohaneisaac convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT beamandrew convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis
AT farhatmaha convolutionalneuralnetworkhighlightsmutationsrelevanttoantimicrobialresistanceinmycobacteriumtuberculosis