Cargando…
A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis
Long diagnostic wait times hinder international efforts to address antibiotic resistance in M. tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine learning models, offers a promising solution. However, generalizability and clinical adoption have been limited by a lac...
Autores principales: | Green, Anna G., Yoon, Chang Ho, Chen, Michael L., Ektefaie, Yasha, Fina, Mack, Freschi, Luca, Gröschel, Matthias I., Kohane, Isaac, Beam, Andrew, Farhat, Maha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250494/ https://www.ncbi.nlm.nih.gov/pubmed/35780211 http://dx.doi.org/10.1038/s41467-022-31236-0 |
Ejemplares similares
-
Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences
por: Ektefaie, Yasha, et al.
Publicado: (2021) -
Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction
por: Chen, Michael L., et al.
Publicado: (2019) -
1397. Modern Lineages of Mycobacterium tuberculosis Were Recently Introduced in Western India and Demonstrate Increased Transmissibility
por: Dixit, Avika, et al.
Publicado: (2021) -
Analysis of Genome-Wide Mutational Dependence in Naturally Evolving Mycobacterium tuberculosis Populations
por: Green, Anna G, et al.
Publicado: (2023) -
Integrative multiomics-histopathology analysis for breast cancer classification
por: Ektefaie, Yasha, et al.
Publicado: (2021)